

CCPP Technical Documentation

	1. CCPP Overview
	1.1. Additional Resources

	1.2. How to Use this Document

	2. CCPP-Compliant Physics Parameterizations
	2.1. General Rules

	2.2. Metadata Rules

	2.3. Input/output Variable (argument) Rules

	2.4. Coding Rules

	2.5. Parallel Programming Rules

	2.6. Scientific Documentation Rules
	2.6.1. Doxygen Comments and Commands

	2.6.2. Doxygen Documentation Style

	2.6.3. Doxygen Configuration

	2.6.4. Including metadata information

	2.6.5. Using Doxygen

	3. CCPP Configuration and Build Options

	4. Constructing Suites
	4.1. Suite Definition File
	4.1.1. Groups

	4.1.2. Subcycling

	4.1.3. Order of Schemes

	4.2. Interstitial Schemes

	4.3. SDF Examples
	4.3.1. Simplest Case: Single Group and no Subcycling

	4.3.2. Case with Multiple Groups

	4.3.3. Case with Subcycling

	4.3.4. GFS v16beta Suite

	5. Suite and Group Caps
	5.1. Overview

	5.2. Automatic unit conversions

	6. Host Side Coding
	6.1. Variable Requirements on the Host Model Side

	6.2. Metadata for Variable in the Host Model
	6.2.1. Active Attribute

	6.3. CCPP Variables in the SCM and UFS Atmosphere Host Models

	6.4. CCPP API
	6.4.1. Data Structure to Transfer Variables between Dynamics and Physics

	6.4.2. Initializing and Finalizing the CCPP

	6.4.3. Running the physics

	6.4.4. Initializing and Finalizing the Physics

	6.5. Host Caps
	6.5.1. SCM Host Cap

	6.5.2. UFS Atmosphere Host Cap

	7. CCPP Code Management
	7.1. Organization of the Code
	7.1.1. Authoritative Repositories

	7.1.2. Directory Structure of ccpp/framework

	7.1.3. Directory Structure of ccpp/physics

	7.2. GitHub Workflow (setting up development repositories)
	7.2.1. Creating Forks

	7.2.2. Checking out the Code

	7.3. Committing Changes to your Fork

	7.4. Contributing Code, Code Review Process
	7.4.1. Creating a PR

	8. Technical Aspects of the CCPP Prebuild
	8.1. Prebuild Script Function

	8.2. Script Configuration

	8.3. Running ccpp_prebuild.py

	8.4. Troubleshooting

	9. Tips for Adding a New Scheme

	10. Parameterization-specific Output
	10.1. Overview

	10.2. Tendencies
	10.2.1. Available Tendencies

	10.2.2. Activating Tendencies

	10.2.3. Outputting Tendencies

	10.2.4. FAQ

	10.2.5. Why did I run out of memory when outputting tendencies?

	10.2.6. Why did I get a runtime logic error when outputting tendencies?

	10.3. Output of Auxiliary Arrays from CCPP
	10.3.1. Enabling the capability

	10.3.2. Recompiling and Examples

	11. Debugging with CCPP
	11.1. Introduction

	11.2. Two categories of debugging with CCPP

	11.3. CCPP-compliant debugging schemes for the UFS
	11.3.1. Descriptions of the CCPP-compliant debugging schemes for the UFS

	11.3.2. How to use these debugging schemes for the UFS

	11.3.3. How to customize the debugging schemes and the output for arrays in the UFS

	12. Acronyms

	13. Glossary

1. CCPP Overview

Ideas for this project originated within the Earth System Prediction Capability (ESPC)
physics interoperability group, which has representatives from the US National Center
for Atmospheric Research (NCAR), the Navy, National Oceanic and Atmospheric Administration
(NOAA) Research Laboratories, NOAA National Weather Service, and other groups. Physics
interoperability, or the ability to run a given physics suite in various host models,
has been a goal of this multi-agency group for several years. An initial mechanism to
run the physics of NOAA’s Global Forecast System (GFS) model in other host models was
developed by the NOAA Environmental Modeling Center (EMC) and later augmented by the
NOAA Geophysical Fluid Dynamics Laboratory (GFDL). The CCPP expanded on that work by
meeting additional requirements put forth by
NOAA [https://dtcenter.org/gmtb/users/ccpp/developers/requirements/CCPP_REQUIREMENTS.pdf],
and brought new functionalities to the physics-dynamics interface. Those include
the ability to choose the order of parameterizations, to subcycle individual
parameterizations by running them more frequently than other parameterizations,
and to group arbitrary sets of parameterizations allowing other computations in
between them (e.g., dynamics and coupling computations).

The architecture of the CCPP and its connection to a host model is shown in
Figure 1.1.
Two elements of the CCPP are highlighted: a library of physical parameterizations
(CCPP-Physics) that conforms to selected standards and an infrastructure (CCPP-Framework)
that enables connecting the physics to a host model. The third element (not shown)
is the CCPP Single Column Model (SCM), a simple host model that can be used with the CCPP
Physics and Framework.

[image: _images/ccpp_arch_host.png]

Fig. 1.1 Architecture of the CCPP and its connection to a host model,
represented here as the driver for an atmospheric model (yellow box). The dynamical
core (dycore), physics, and other aspects of the model (such as coupling) are
connected to the driving host through the pool of physics caps. The CCPP-Physics is
denoted by the gray box at the bottom of the physics, and encompasses the
parameterizations, which are accompanied by physics caps.

The host model needs to have functional documentation (metadata) for any variable that will be
passed to or received from the physics. The CCPP-Framework is used to compare the variables
requested by each physical parameterization against those provided by the host model 1, and
to check whether they are available, otherwise an error will be issued. This process serves
to expose the variables passed between physics and dynamics, and to clarify how information
is exchanged among parameterizations. During runtime, the CCPP-Framework is responsible for
communicating the necessary variables between the host model and the parameterizations.

The CCPP-Physics contains the parameterizations and suites that are used operationally in
the UFS Atmosphere, as well as parameterizations that are under development for possible
transition to operations in the future. The CCPP aims to support the broad community
while benefiting from the community. In such a CCPP ecosystem
(Figure 1.2), the CCPP can be used not only by the operational
centers to produce operational forecasts, but also by the research community to conduct
investigation and development. Innovations created and effectively tested by the research
community can be funneled back to the operational centers for further improvement of the
operational forecasts.

Both the CCPP-Framework and the CCPP-Physics are developed as open source code, follow
industry-standard code management practices, and are freely distributed through GitHub
(https://github.com/NCAR/ccpp-physics and https://github.com/NCAR/ccpp-framework).
This documentation is housed in repository https://github.com/NCAR/ccpp-doc.

[image: _images/CCPP_Ecosystem_Detailed-Diagram_only.png]

Fig. 1.2 CCPP ecosystem.

The CCPP is governed by the groups that contribute to its development. The governance
of the CCPP-Physics is currently led by NOAA, and the DTC works with EMC and the
National Weather Service Office of Science and Technology Integration to determine schemes
and suites to be included and supported. The governance of the CCPP-Framework is jointly
undertaken by NOAA and NCAR (see more information at https://github.com/NCAR/ccpp-framework/wiki
and https://dtcenter.org/gmtb/users/ccpp).

The table below lists all parameterizations supported in CCPP and the
CCPP Scientific Documentation [https://dtcenter.ucar.edu/GMTB/v5.0.0/sci_doc]
describes the parameterizations in detail. The parameterizations
are grouped in suites, which can be classified primarily as operational or experimental.
There are also variants, which are suites that vary slightly from the other ones
for some practical reason, such as to enable a suite even when certain fields are
missing from the initial conditions. Suites are supported for use with specific
host models, such as the SCM, and the versions of the UFS Weather Model used in
the UFS Medium-Range Weather (MRW) Application or the UFS Short-Range Weather (SRW)
Application.

Table 1.1 Suites supported in the CCPP

	
	Operational

	Developmental

	Host

	SCM/MRW/SRW

	SCM/MRW

	SCM

	SCM

	SCM/SRW

	
	GFS_v15p2

	GFS_v16beta

	csawmg

	GSD_v1

	RRFS_v1alpha

	Microphysics

	GFDL

	GFDL

	M-G3

	Thompson

	Thompson

	PBL

	K-EDMF

	TKE EDMF

	K-EDMF

	MYNN

	MYNN

	Deep convection

	SAS

	saSAS

	CSAW

	GF

	GF

	Shallow convection

	SAS

	saSAS

	saSAS

	MYNN and GF

	MYNN

	Radiation

	RRTMG

	RRTMG

	RRTMG

	RRTMG

	RRTMG

	Surface layer

	GFS

	GFS

	GFS

	GFS

	GFS

	Gravity Wave Drag

	uGWD

	uGWD

	uGWD

	uGWD

	uGWD

	Land surface

	Noah

	Noah

	Noah

	RUC

	Noah-MP

	Ozone

	NRL 2015

	NRL 2015

	NRL 2015

	NRL 2015

	NRL 2015

	H2O

	NRL 2015

	NRL 2015

	NRL 2015

	NRL 2015

	NRL 2015

	Ocean

	NSST

	NSST

	NSST

	NSST

	NSST

The second row indicates which host model the suite is supported for.
The suites that are currently supported in the CCPP are listed in the third row. The
types of parameterization are denoted in the first column, where H2O represents the stratospheric water
vapor parameterization. The GFS_v15p2 suite includes the GFDL microphysics, a Eddy-Diffusivity Mass
Flux (K-EDMF) planetary boundary layer (PBL) scheme, scale-aware (sa) Simplified Arakawa-Schubert
(SAS) convection, Rapid Radiation Transfer Model for General Circulation Models (RRTMG) radiation,
the GFS surface layer, the unified gravity wave drag (uGWD), the Noah Land Surface Model (LSM),
the 2015 Navy Research Laboratory (NRL) ozone and stratospheric water vapor schemes, and the
NSST ocean scheme. The three developmental suites are candidates for future operational implementations. The GFS_v16beta
suite is the same as the GFS_v15p2 suite except using the Turbulent Kinetic Energy (TKE)-based EDMF
PBL scheme. The Chikira-Sugiyama (csawmg) suite uses the Morrison-Gettelman 3 (M-G3) microphysics
scheme and Chikira-Sugiyama convection scheme with Arakawa-Wu extension (CSAW). The NOAA Global
Systems Division (GSD) v1 suite (GSD_v1) includes Thompson microphysics, Mellor-Yamada-Nakanishi-Niino
(MYNN) PBL and shallow convection, Grell-Freitas (GF) deep
convection schemes, and the Rapid Update Cycle (RUC) LSM. Suite RRFS_v1alpha is
targeted for the Rapid Refresh Forecast System
(RRFS) and differs from the GSD_v1 suite by not using parameterized convection and employing the
Noah-Multiparameterization (MP) LSM.

Those interested in the history of previous CCPP releases should know that the
first public release of the CCPP took place in April 2018 and included all the
parameterizations of the operational GFS v14, along with the ability to connect to the
SCM. The second public release of the CCPP took place in August 2018 and additionally
included the physics suite tested for the implementation of GFS v15. The third public release of
the CCPP, in June 2019, had four suites: GFS_v15, corresponding to the GFS v15 model implemented operationally
in June 2019, and three developmental suites considered for
use in GFS v16 (GFS_v15plus with an alternate PBL scheme, csawmg with alternate convection and
microphysics schemes, and GFS_v0 with alternate convection, microphysics, PBL, and land surface schemes).
The CCPP v4.0 release, issued in March 2020, contained suite GFS_v15p2, which is an
updated version of the operational
GFS v15 and replaced suite GFS_v15. It also contained three developmental suites:
csawmg with minor updates, GSD_v1 (an update over the previously released GSD_v0),
and GFS_v16beta, which was the target suite at the time for implementation in the
upcoming operational GFSv16 (it replaced suite GFSv15plus).
The CCPP v4.1 release, issued in October 2020, was a minor
upgrade with the capability to build the code using Python 3 (previously only Python 2
was supported).
The CCPP v5.0 release, issued in February 2021, was a major
upgrade to enable use with the UFS Short-Range Weather (SRW) Application and the RRFS_v1alpha suite.

	1

	As of this writing, the CCPP has been validated with two host models: the CCPP
SCM and the atmospheric component of
NOAA’s Unified Forecast System (UFS) (hereafter the UFS Atmosphere) that utilizes
the Finite-Volume Cubed Sphere (FV3) dycore. The CCPP can be utilized both with the
global and limited-area configurations of the UFS Atmosphere. CCPP v4.1.0 is the latest
release compatible with the global UFS Medium-Range Weather Application. CCPP v5.0.0 is only
compatible with the limited-area UFS Short-Range Weather Application. The CCPP
has also been run experimentally with a Navy model. Work is under
way to connect and validate the use of the CCPP-Framework with NCAR models.

1.1. Additional Resources

For the latest version of the released code and additional documentation,
please visit the DTC Website [http://www.dtcenter.org/ccpp].

Please send questions and comments to the CCPP Forum at https://dtcenter.org/forum/ccpp-user-support.
When using the CCPP with the UFS, questions can also be posted
in the UFS Forum at https://forums.ufscommunity.org/.

1.2. How to Use this Document

This document contains documentation for the Common Community Physics Package (CCPP). It describes the

	Physics schemes and interstitials

	Suite definition files

	CCPP-compliant parameterizations

	Process to add a new scheme or suite

	Host-side coding

	CCPP code management and governance

	Parameterization-specific output

	Debugging strategies

This table describes the type changes and symbols used in this guide.

	Typeface or Symbol

	Meaning

	Example

	AaBbCc123

	The names of commands,
files, and directories;

on-screen computer output

	Edit your .bashrc

Use ls -a to list all files.

host$ You have mail!

Following these typefaces and conventions, shell commands, code examples, namelist variables, etc.
will be presented in this style:

mkdir ${TOP_DIR}

2. CCPP-Compliant Physics Parameterizations

The rules for a scheme to be considered CCPP-compliant are summarized in this section. It
should be noted that making a scheme CCPP-compliant is a necessary but not guaranteed step
for the acceptance of the scheme in the pool of supported CCPP-Physics. Acceptance is
dependent on scientific innovation, demonstrated value, and compliance with the rules
described below. The criteria for acceptance of a scheme into the CCPP is under development.

It is recommended that parameterizations be comprised of the smallest units that will be used.
For example, if a given set of deep and shallow convection schemes will always be called together
and in a pre-established order, it is acceptable to group them within a single scheme. However, if one
envisions that the deep and shallow convection schemes may someday operate independently, it is
recommended to code two separate schemes to allow more flexibility.

Some schemes in the CCPP have been implemented using a driver as an entry point. In this context,
a driver is defined as a wrapper that sits on top of the actual scheme and provides the CCPP entry
points. In order to minimize the layers of code in the CCPP, the implementation of a driver is
discouraged, that is, it is preferable that the CCPP be composed of atomic parameterizations. One
example is the implementation of the MG microphysics, in which a simple entry point
leads to two versions of the scheme, MG2 and MG3. A cleaner implementation would be to retire MG2
in favor of MG3, to put MG2 and MG3 as separate schemes, or to create a single scheme that can behave
as MG2 nd MG3 depending on namelist options.

The implementation of a driver is reasonable under the following circumstances:

	To preserve schemes that are also distributed outside of the CCPP. For example, the Thompson
microphysics scheme is distributed both with the Weather Research and Forecasting (WRF) model
and with the CCPP. Having a driver with CCPP directives allows the Thompson scheme to remain
intact so that it can be synchronized between the WRF model and the CCPP distributions. See
more in mp_thompson_hrrr.F90 in the ccpp-physics/physics directory.

	To deal with optional arguments. A driver can check whether optional arguments have been
provided by the host model to either write out a message and return an error code or call a
subroutine with or without optional arguments. For example, see mp_thompson_hrrr.F90,
radsw_main.f, or radlw_main.f in the ccpp-physics/physics directory.

	To perform unit conversions or array transformations, such as flipping the vertical direction
and rearranging the index order, for example, cu_gf_driver.F90 in the ccpp-physics/physics
directory.

Schemes in the CCPP are classified into two categories: primary schemes and interstitial schemes.
Primary schemes are the major parameterizations, such as PBL, microphysics, convection, radiation,
surface layer parameterizations, etc. Interstitial schemes are modularized pieces of code that
perform data preparation, diagnostics, or other “glue” functions and allow primary schemes to work
together as a suite. They can be categorized as “scheme-specific” or “suite-level”. Scheme-specific
interstitial schemes augment a specific primary scheme (to provide additional functionality).
Suite-level interstitial schemes provide additional functionality on top of a class of primary schemes,
connect two or more schemes together, or provide code for conversions, initializing sums, or applying
tendencies, for example. The rules and guidelines provided in the following sections apply both to
primary and interstitial schemes.

2.1. General Rules

A CCPP-compliant scheme is in the form of Fortran modules. Listing 2.1 contains
the template for a CCPP-compliant scheme (ccpp/framework/doc/DevelopersGuide/scheme_template.F90),
which includes three essential components: the _init, _run, and _finalize subroutines. Each .f or .F90
file that contains an entry point(s) for CCPP scheme(s) must be accompanied by a .meta file in the same directory
as described in Section 2.2

 module scheme_template

 contains

 subroutine scheme_template_init ()
 end subroutine scheme_template_init

 subroutine scheme_template_finalize()
 end subroutine scheme_template_finalize

!> \section arg_table_scheme_template_run Argument Table
!! \htmlinclude scheme_template_run.html
!!
 subroutine scheme_template_run (errmsg, errflg)

 implicit none

 !--- arguments
 ! add your arguments here
 character(len=*), intent(out) :: errmsg
 integer, intent(out) :: errflg

 !--- local variables
 ! add your local variables here

 continue

 !--- initialize CCPP error handling variables
 errmsg = ''
 errflg = 0

 !--- initialize intent(out) variables
 ! initialize all intent(out) variables here

 !--- actual code
 ! add your code here

 ! in case of errors, set errflg to a value != 0,
 ! assign a meaningful message to errmsg and return

 return

 end subroutine scheme_template_run

 end module scheme_template

Listing 2.1: Fortran template for a CCPP-compliant scheme showing the _init, _run, and _finalize subroutines.

More details are found below:

	Each scheme must be in its own module and must include three (_init, _run, and _finalize)
subroutines (entry points). The module name and the subroutine names must be consistent with the
scheme name. The _init and _finalize subroutines are run automatically when the CCPP-Physics
are initialized and finalized, respectively. These two subroutines may be called more than once,
depending on the host model’s parallelization strategy, and as such must be idempotent (the answer
must be the same when the subroutine is called multiple times). The _run subroutine contains the
code to execute the scheme.

	Each .f or .F90 file with one or more CCPP entry point schemes must be accompanied by a a .meta file containing
metadata about the arguments to the scheme(s). For more information, see Section 2.2.

	Non-empty schemes must be preceded by the three lines below. These are markup comments used by Doxygen,
the software employed to create the scientific documentation, to insert an external file containing metadata
information (in this case, schemename_run.html) in the documentation. See more on this topic in
Section 2.6.

!> \section arg_table_schemename_run Argument Table
!! \htmlinclude schemename_run.html
!!

	All external information required by the scheme must be passed in via the argument list. Statements
such as ‘use EXTERNAL_MODULE’ should not be used for passing in data and all physical constants
should go through the argument list.

	Note that standard names, variable names, module names, scheme names and subroutine names are all case sensitive.

	Interstitial modules (scheme_pre and scheme_post) can be included if any part of the physics
scheme must be executed before (_pre) or after (_post) the module scheme defined above.

2.2. Metadata Rules

	Metadata files (.meta) are in a relaxed config file format and contain metadata for one or more CCPP entry point schemes.
There should be one .meta file for each .f or .``F90`` file.

	For each CCPP compliant scheme, the .meta file should have this set of lines

[ccpp-arg-table]
 name = <name>
 type = <type>

	ccpp-arg-table indicates the start of a new metadata section for a given scheme.

	<name> is name of the corresponding subroutine/module.

	<type> can be scheme, module, DDT, or host.

	For empty schemes, the three lines above are sufficient. For non-empty schemes, the metadata must
describe all input and output arguments to the scheme using the following format:

[varname]
 standard_name = <standard_name>
 long_name = <long_name>
 units = <units>
 rank = <rank>
 dimensions = <dimensions>
 type = <type>
 kind = <kind>
 intent = <intent>
 optional = <optional>

	The intent argument is only valid in scheme metadata tables, as it is not applicable to the other types.

	The following attributes are optional: long_name, kind, and optional.

	Lines can be combined using | as a separator, e.g.,

type = real | kind = kind_phys

	[varname] is the local name of the variable in the subroutine.

	The dimensions attribute should be empty parentheses for scalars or contain the standard_name for the start and end for
each dimension of an array. ccpp_constant_one is the assumed start for any dimension which only has a single value.
For example:

dimensions = ()
dimensions = (ccpp_constant_one:horizontal_loop_extent, vertical_level_dimension)
dimensions = (horizontal_dimension,vertical_dimension)
dimensions = (horizontal_dimension,vertical_dimension_of_ozone_forcing_data,number_of_coefficients_in_ozone_forcing_data)

	Listing 2.2 contains the template for a CCPP-compliant scheme
(ccpp/framework/doc/DevelopersGuide/scheme_template.meta),

[ccpp-arg-table]
 name = ozphys_init
 type = scheme

##
[ccpp-arg-table]
 name = ozphys_finalize
 type = scheme

##
[ccpp-arg-table]
 name = ozphys_run
 type = scheme
[errmsg]
 standard_name = ccpp_error_message
 long_name = error message for error handling in CCPP
 units = none
 dimensions = ()
 type = character
 kind = len=*
 intent = out
 optional = F
[errflg]
 standard_name = ccpp_error_flag
 long_name = error flag for error handling in CCPP
 units = flag
 dimensions = ()
 type = integer
 intent = out
 optional = F

Listing 2.2: Fortran template for a metadata file accompanying a CCPP-compliant scheme.

2.3. Input/output Variable (argument) Rules

	Variables available for CCPP physics schemes are identified by their unique
standard_name. While an effort is made to comply with existing standard_name
definitions of the Climate and Forecast (CF) conventions (http://cfconventions.org), additional names
are used in the CCPP (see below for further information).

	A list of available standard names and an example of naming conventions can be found in
ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES_${HOST}.pdf, where ${HOST} is the
name of the host model. Running the CCPP prebuild script (described in Chapter 8)
will generate a LaTeX source file that can be compiled to produce
a PDF file with all variables defined by the host model and requested by the physics schemes.

	A standard_name cannot be assigned to more than one local variable (local_name).
The local_name of a variable can be chosen freely and does not have to match the
local_name in the host model.

	All variable information (standard_name, units, dimensions) must match the specifications on
the host model side, but sub-slices can be used/added in the host model. For example, when
using the UFS Atmosphere as the host model, tendencies are split in GFS_typedefs.meta
so they can be used in the necessary physics scheme:

[dt3dt(:,:,1)]
 standard_name = cumulative_change_in_temperature_due_to_longwave_radiation
 long_name = cumulative change in temperature due to longwave radiation
 units = K
 dimensions = (horizontal_dimension,vertical_dimension)
 type = real
 kind = kind_phys
[dt3dt(:,:,2)]
 standard_name = cumulative_change_in_temperature_due_to_shortwave_radiation
 long_name = cumulative change in temperature due to shortwave radiation
 units = K
 dimensions = (horizontal_dimension,vertical_dimension)
 type = real
 kind = kind_phys
[dt3dt(:,:,3)]
 standard_name = cumulative_change_in_temperature_due_to_PBL
 long_name = cumulative change in temperature due to PBL
 units = K
 dimensions = (horizontal_dimension,vertical_dimension)
 type = real
 kind = kind_phys

	The two mandatory variables that any scheme-related subroutine must accept as intent(out) arguments are
errmsg and errflg (see also coding rules in Section 2.4).

	At present, only two types of variable definitions are supported by the CCPP-framework:

	Standard Intrinsic Fortran variables are preferred (character, integer, logical, real).
For character variables, the length should be specified as * in order to allow the host model
to specify the corresponding variable with a length of its own choice. All others can have a
kind attribute of a kind type defined by the host model.

	Derived data types (DDTs). While the use of DDTs is discouraged, some use cases may
justify their application (e.g. DDTs for chemistry that contain tracer arrays or information on
whether tracers are advected). It should be understood that use of DDTs within schemes
forces their use in host models and potentially limits a scheme’s portability. Where possible,
DDTs should be broken into components that could be usable for another scheme of the same type.

	It is preferable to have separate variables for physically-distinct quantities. For example,
an array containing various cloud properties should be split into its individual
physically-distinct components to facilitate generality. An exception to this rule is if
there is a need to perform the same operation on an array of otherwise physically-distinct
variables. For example, tracers that undergo vertical diffusion can be combined into one array
where necessary. This tactic should be avoided wherever possible, and is not acceptable merely
as a convenience.

	If a scheme is to make use of CCPP’s subcycling capability, the loop counter can be obtained
from CCPP as an intent(in) variable (see a mandatory list of variables
that are provided by the CCPP-Framework and/or the host model for this and other purposes).

2.4. Coding Rules

	Code must comply to modern Fortran standards (Fortran 90/95/2003).

	Labeled end statements should be used for modules, subroutines and functions,
for example, module scheme_template → end module scheme_template.

	Implicit variable declarations are not allowed. The implicit none statement is mandatory and
is preferable at the module-level so that it applies to all the subroutines in the module.

	All intent(out) variables must be set inside the subroutine, including the mandatory
variables errflg and errmsg.

	Decomposition-dependent host model data inside the module cannot be permanent,
i.e. variables that contain domain-dependent data cannot be kept using the save attribute.

	goto statements are not alowed.

	common blocks are not allowed.

	Errors are handled by the host model using the two mandatory arguments errmsg and
errflg. In the event of an error, a meaningful error message should be assigned to errmsg
and set errflg to a value other than 0, for example:

write (errmsg, ‘(*(a))’) ‘Logic error in scheme xyz: …’
errflg = 1
return

	Schemes are not allowed to abort/stop the program.

	Schemes are not allowed to perform I/O operations except for reading lookup tables
or other information needed to initialize the scheme, including stdout and stderr.
Diagnostic messages are tolerated, but should be minimal.

	Line lengths of no more than 120 characters are suggested for better readability.

Additional coding rules are listed under the Coding Standards section of the NOAA NGGPS
Overarching System team document on Code, Data, and Documentation Management for NOAA Environmental
Modeling System (NEMS) Modeling Applications and Suites (available at
https://docs.google.com/document/u/1/d/1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit#heading=h.97v79689onyd).

2.5. Parallel Programming Rules

Most often shared memory (OpenMP: Open Multi-Processing) and MPI (Message Passing Interface)
communication are done outside the physics in which case the physics looping and arrays already
take into account the sizes of the threaded tasks through their input indices and array
dimensions. The following rules should be observed when including OpenMP or MPI communication
in a physics scheme:

	Shared-memory (OpenMP) parallelization inside a scheme is allowed with the restriction
that the number of OpenMP threads to use is obtained from the host model as an intent(in)
argument in the argument list (Listing 6.2).

	MPI communication is allowed in the _init and _finalize phase for the purpose
of computing, reading or writing scheme-specific data that is independent of the host
model’s data decomposition. An example is the initial read of a lookup table of aerosol
properties by one or more MPI processes, and its subsequent broadcast to all processes.
Several restrictions apply:

	The implementation of reading and writing of data must be scalable to perform
efficiently from a few to millions of tasks.

	The MPI communicator must be provided by the host model as an intent(in)
argument in the argument list (see list of mandatory variables).

	The use of MPI_COMM_WORLD is not allowed.

	Calls to MPI and OpenMP functions, and the import of the MPI and OpenMP libraries,
must be guarded by C preprocessor directives as illustrated in the following listing.
OpenMP pragmas can be inserted without C preprocessor guards, since they are ignored
by the compiler if the OpenMP compiler flag is omitted.

#ifdef MPI
 use mpi
#endif
#ifdef OPENMP
 use omp_lib
#endif
...
#ifdef MPI
 call MPI_BARRIER(mpicomm, ierr)
#endif

#ifdef OPENMP
 me = OMP_GET_THREAD_NUM()
#else
 me = 0
#endif

	For Fortran coarrays, consult with the CCPP Forum (https://dtcenter.org/forum/ccpp-user-support).

2.6. Scientific Documentation Rules

Technically, scientific documentation is not needed for a parameterization
to work with the CCPP. However, scientific and technical documents are
important for code maintenance and for fostering understanding among stakeholders.
As such, it is required of physics schemes in order to be included in the CCPP. This
section describes the process used for documenting parameterizations in the CCPP.
Doxygen was chosen as a tool for generating human-readable output due to its
built-in functionality with Fortran, its high level of configurability, and its
ability to parse inline comments within the source code. Keeping documentation
with the source itself increases the likelihood that the documentation will be
updated along with the underlying code. Additionally, inline documentation is
amenable to version control.

The purpose of this section is to provide an understanding of how to properly
document a physics scheme using doxygen inline comments in the Fortran code
and metadata information contained in the .meta files. It covers what kind of
information should be in the documentation, how to mark up the inline comments
so that doxygen will parse them correctly, where to put various comments within
the code, how to include information from the .meta files,
and how to configure and run doxygen to generate HTML
output. For an example of the HTML rendering of the CCPP Scientific Documentation, see
https://dtcenter.org/GMTB/v5.0.0/sci_doc.
Part of this documentation, namely metadata about subroutine arguments, has
functional significance as part of the CCPP infrastructure. The metadata must be
in a particular format to be parsed by Python scripts that “automatically” generate
a software cap for a given physics scheme. Although the procedure outlined herein
is not unique, following it will provide a level of continuity with previous
documented schemes.

Reviewing the documentation for CCPP parameterizations is a good way of getting
started in writing documentation for a new scheme.

2.6.1. Doxygen Comments and Commands

All doxygen commands start with a backslash (“\”) or an at-sign (“@”). The
doxygen inline comment blocks begin with “!>”, and subsequent lines begin with “!!”,
which means that regular Fortran comments using “!” are not parsed by doxygen.

In the first line of each Fortran file, a brief one-sentence overview of the file purpose
is present using the doxygen command “\\file”:

! !> \file cires_ugwp.F90
!! This file contains the Unified Gravity Wave Physics (UGWP) scheme by Valery Yudin (University of Colorado, CIRES)

	A parameter definition begins with “!<”, where the sign ‘<’ just tells
	Doxygen that documentation follows. Example:

integer, parameter, public :: NF_VGAS = 10 !< number of gas species
integer, parameter :: IMXCO2 = 24 !< input CO2 data longitude points
integer, parameter :: JMXCO2 = 12 !< input CO2 data latitude points
integer, parameter :: MINYEAR = 1957 !< earlist year 2D CO2 data available

2.6.2. Doxygen Documentation Style

To document a physics suite, a broad array of information should be included
in order to serve both software engineering and scientific purposes. The
documentation style could be divided into four categories:

	Doxygen Files

	Doxygen Pages (overview page and scheme pages)

	Doxygen Modules

	Bibliography

2.6.2.1. Doxygen files

Doxygen provides the “\\file” tag as a way to provide documentation on the
Fortran source code file level. That is, in the generated documentation,
one may navigate by source code filenames (if desired) rather than through
a “functional” navigation. The most important documentation organization is
through the “module” concept mentioned below, because the division of a scheme
into multiple source files is often functionally irrelevant. Nevertheless,
using a “\\file” tag provides an alternate path to navigate the documentation
and it should be included in every source file. Therefore, it is prudent to
include a small documentation block to describe what code is in each file
using the “\\file” tag, e.g.:

!>\file cu_gf_driver.F90
!! This file is scale-aware Grell-Freitas cumulus scheme driver.

The brief description for each file is displayed next to the source filename
on the doxygen-generated “File List” page:

[image: _images/DoxygenFileList.png]

2.6.2.2. Doxygen Overview Page

Pages in Doxygen can be used for documentation that is not directly attached
to a source code entity such as file or module. They are external text files
that generate pages with a high-level scientific overview and
typically contain a longer description of a project or suite. You can refer to
any source code entity from within the page.

The DTC maintains a main page, created by the Doxygen command
“\\mainpage”, containing an overall description and background of the CCPP.
Physics developers do not have to edit the file with the mainpage, which has a
user-visible title, but not label:

/**
\mainpage Introduction
...
*/

All other pages listed under the main page are created using the Doxygen
tag “\\page” described in the next section. In any Doxygen page,
you can refer to any entity of source code by using Doxygen tag “\\ref”
or “@ref”. Example in suite_FV3_GFS_v15p2.xml.txt:

The GFS v15p2 physics suite uses the parameterizations in the following order,
as defined in

\c FV3_GFS_v15p2 :
 - \ref fast_sat_adj
 - \ref GFS_RRTMG
 - \ref GFS_SFCLYR
 - \ref GFS_NSST
 - \ref GFS_NOAH
 - \ref GFS_SFCSICE
 - \ref GFS_HEDMF
 - \ref cires_ugwp
 - \ref GFS_RAYLEIGH
 - \ref GFS_OZPHYS
 - \ref GFS_H2OPHYS
 - \ref GFS_SAMFdeep
 - \ref GFS_SAMFshal
 - \ref GFDL_cloud
 - \ref GFS_CALPRECIPTYPE
 - \ref STOCHY_PHYS

The HTML result is here [https://dtcenter.org/GMTB/v5.0.0/sci_doc/GFS_v15p2_page.html].
You can see that the “-” signs before “@ref” generate a list with bullets.
Doxygen command “\\c” displays its argument using a typewriter font.

2.6.2.3. Physics Scheme Pages

Each major scheme in CCPP should have its own scheme page containing an
overview of the parameterization. These pages are not tied to the Fortran
code directly; instead, they are created with a separate text file that starts
with the command “\\page”. Scheme pages are stored in the ccpp-physics/physics/docs/pdftxt
directory. Each page has a label (e.g., “GFS_SAMFdeep” in the following example) and a
user-visible title (“GFS Scale-Aware Simplified Arakawa-Schubert (sa-SAS) Deep Convection
Scheme” in the following example). It is noted that labels must be unique
across the entire doxygen project so that the “\\ref” command can be used
to create an unambiguous link to the structuring element. It therefore makes
sense to choose label names that refer to their context.

/**
\page GFS_SAMFdeep GFS Scale-Aware Simplified Arakawa-Schubert (sa-SAS) Deep Convection Scheme
\section des_deep Description
 The scale-aware mass-flux (SAMF) deep convection scheme is an
 updated version of the previous Simplified Arakawa-Schubert (SAS) scheme
 with scale and aerosol awareness and parameterizes the effect of deep
 convection on the environment (represented by the model state variables)
 in the following way …

\section intra_deep Intraphysics Communication
\ref arg_table_samfdeepcnv_run

\section gen_al_deep General Algorithm
\ref general_samfdeep

*/

The physics scheme page will often describe the following:

	Description section (“\\section”), which usually includes:

	Scientific origin and scheme history (“\\cite”)

	Key features and differentiating points

	A picture is worth a thousand words (“\\image”)

To insert images into doxygen documentation, you’ll need to have your
images ready in a graphical format, such as Portable Network Graphic (png), depending
on which type of doxygen output you are planning to generate. For example, for LaTeX
output, the images must be provided in Encapsulated PostScript (.eps), while for
HTML output the images can be provided in the png format. Images are stored in
ccpp-physics/physics/docs/img directory. Example of including an image for
HTML output:

\image html gfdl_cloud_mp_diagram.png "Figure 1: GFDL MP at a glance (Courtesy of S.J. Lin at GFDL)" width=10cm

	Intraphysics Communication Section (“\\section”)

The argument table for CCPP entry point subroutine {scheme}_run will be in this section.
It is created by inserting a reference link (“\\ref”) to the table in the Fortran code
for the scheme.

	General Algorithm Section (“\\section”)

The general description of the algorithn will be in this section. It is created by inserting
a reference link (“\\ref”) in the Fortran code for the scheme.

The symbols “/**” and “*/” need to be the first and last entries of the page.
See an example of GFS Scale-Aware Simplified Arakawa-Schubert (sa-SAS) Deep Convection Scheme
page in the previous page.

Note that separate pages can also be created to document something that is not a scheme.
For example, a page could be created to describe a suite, or how a set of schemes work
together. Doxygen automatically generates an index of all pages that is visible at the
top-level of the documentation, thus allowing the user to quickly find, and navigate
between, the available pages.

2.6.2.4. Doxygen Modules

The CCPP documentation is based on doxygen modules (note this is not the same as
Fortran modules). Each doxygen module pertains to a particular parameterization and
is used to aggregate all code related to that scheme, even when it is in separate
files. Since doxygen cannot know which files or subroutines belong to each physics
scheme, each relevant subroutine must be tagged with the module name. This allows
doxygen to understand your modularized design and generate the documentation accordingly.
Here [https://dtcenter.org/GMTB/v5.0.0/sci_doc/modules.html]
is a list of module list defined in CCPP.

A module is defined using:

!>\defgroup group_name group_title

Where group_name is the identifier and the group_title is what the
group is referred to in the output. In the example below, we’re defining a parent
module “GFS radsw Main”:

!> \defgroup module_radsw_main GFS radsw Main
!! This module includes NCEP's modifications of the RRTMG-SW radiation
!! code from AER.
!! ...
!!\author Eli J. Mlawer, emlawer@aer.com
!!\author Jennifer S. Delamere, jdelamer@aer.com
!!\author Michael J. Iacono, miacono@aer.com
!!\author Shepard A. Clough
!!\version NCEP SW v5.1 Nov 2012 -RRTMG-SW v3.8
!!

One or more contact persons should be listed with author. If you make
significant modifications or additions to a file, consider adding an
author and a version line for yourself. The above example generates
the Author, Version sections on the page. All email addresses are converted
to mailto hypertext links automatically:

	Author
	Eli J. Mlawer, emlawer@aer.com

Jennifer S. Delamere, jdelamer@aer.com

Michael J. Iacono, miacono@aer.com

Shepard A. Clough

	Version
	NCEP SW v5.1 Nov 2012 -RRTMG-SW v3.8

In order to include other pieces of code in the same module, the following
tag must be used at the beginning of a comment block:

\ingroup group_name

For example:

!>\ingroup module_radsw_main
!> The subroutine computes the optical depth in band 16: 2600-3250
!! cm-1 (low - h2o,ch4; high - ch4)
!-----------------------------------
 subroutine taumol16
!...................................

In the same comment block where a group is defined for a physics scheme,
there should be some additional documentation. First, using the “\\brief”
command, a brief one or two sentence description of the scheme should be
included. After a blank doxygen comment line, begin the scheme origin
and history using “\\version”, “\\author” and “\\date”.

Each subroutine that is a CCPP entry point to a parameterization, should
be further documented with a documentation block immediately preceding
its definition in the source. The documentation block should include at
least the following components:

	A brief one- or two-sentence description with the "\\brief" tag

	A more detailed one or two paragraph description of the function of the subroutine

	A comment indicating that metadata information about the subroutine arguments follows
(in this example, the subroutine is called SUBROUTINE_NAME. Note that this line is
also functional documentation used during the CCPP prebuild step.

!! \section arg_table_SUBROUTINE_NAME Argument Table

	For subroutines that are non-empty, a second comment indicating that a table
of metadata to describe the subroutine arguments will be included from a separate file
in HTML format (in this case, file SUBROUTINE_NAME.html). Note that empty
subroutines, as is sometimes the case for init and finalize subroutines,
do not require the inclusion of a file with metadata information.
Please refer to the section below for information on how to generate the HTML files
with metadata information from the .meta files.

The argument table should be immediately followed by a blank doxygen line “!!”.

!! \htmlinclude SUBROUTINE_NAME.html
!!

	A section called “General Algorithm” with a bullet or numbered list of
the tasks completed in the subroutine algorithm

	At the end of initial subroutine documentation block, a “Detailed algorithm”
section is started and the entirety of the code is encompassed with the
“!> @{” and “!> @}” delimiters. This way, any comments explaining detailed
aspects of the code are automatically included in the “Detailed Algorithm” section.

For subroutines that are not a CCPP entry point to a scheme, no inclusion of
metadata information is required.
But it is suggested that following “\\ingroup” and “\\brief”, use
“\\param” to define each argument with local name, a short description and unit, i.e.,

!> \ingroup HEDMF
!! \brief This subroutine is used for calculating the mass flux and updraft properties.
!! ...
!!
!! \param[in] im integer, number of used points
!! \param[in] ix integer, horizontal dimension
!! \param[in] km integer, vertical layer dimension
!! \param[in] ntrac integer, number of tracers
!! \param[in] delt real, physics time step
!! ...
!! \section general_mfpbl mfpbl General Algorithm
!! -# Determine an updraft parcel's entrainment rate, buoyancy, and vertical velocity.
!! -# Recalculate the PBL height ...
!! -# Calculate the mass flux profile and updraft properties.
!! \section detailed_mfpbl mfpbl Detailed Algorithm
!> @{
 subroutine mfpbl(im,ix,km,ntrac,delt,cnvflg, &
 & zl,zm,thvx,q1,t1,u1,v1,hpbl,kpbl, &
 & sflx,ustar,wstar,xmf,tcko,qcko,ucko,vcko)
 …
 end subroutine mfpbl
!> @}

2.6.2.5. Bibliography

Doxygen can handle in-line paper citations and link to an automatically created
bibliography page. The bibliographic data for any papers that are cited need to
be put in BibTeX format and saved in a .bib file. The bib file for CCPP is
included in the repository, and the doxygen configuration option
cite_bib_files points to the included file.

Citations are invoked with the following tag:

\cite bibtex_key_to_paper

2.6.2.6. Equations

See link [http://www.doxygen.nl/manual/formulas.html] for information
about including equations. For the best rendering, the following option
should be set in the Doxygen configuration file:

USE_MATHJAX = YES
MATHJAX_RELPATH = https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2

There are many great online resources to use the LaTeX math typesetting used in doxygen.

2.6.3. Doxygen Configuration

2.6.3.1. Configuration File

The CCPP is distributed with a doxygen configuration file
./ccpp/physics/physics/docs/ccpp_doxyfile, such that you don’t need to
create an additional one.

If starting from scratch, you can generate a default configuration file using the command:

doxygen -g <config_file>

Then you can edit the default configuration file to serve your needs. The default
file includes plenty of comments to explain all the options. Some of the important
things you need to pay attention to are:

	The name of your project:

PROJECT_NAME = ‘your project name’

	The input files (relative to the directory where you run doxygen):

INPUT =

The following lines should be listed here: the doxygen mainpage text file, the
scheme pages, and the source codes to be contained in the output. The order in
which schemes are listed determines the order in the HTML result.

	The directory where to put the documentation (if you leave it empty, then the
documentation will be created in the directory where you run doxygen):

OUTPUT_DIRECTORY = doc

	The type of documentation you want to generate (HTML, LaTeX and/or something else):

GENERATE_HTML = YES

If HTML is chosen, the following tells doxygen where to put the documentation
relative to the OUTPUT_DIRECTORY:

HTML_OUTPUT = html

and

HTML_FILE_EXTENSION = .html

determines the extension of the files.

	Other important settings for a Fortran code project are:

OPTIMIZE_FOR_FORTRAN = YES
EXTENSION_MAPPING = .f=FortranFree \
 .F90=FortranFree \
 .f90=FortranFree
LAYOUT_FILE = ccpp_dox_layout.xml
CITE_BIB_FILES = library.bib
FILE_PATTERN = *.f \
 *.F90 \
 *.f90 \
 *.txt
GENERATE_TREEVIEW = yes

Doxygen files for layout (ccpp_dox_layout.xml), a HTML style (ccpp_dox_extra_style.css),
and bibliography (library.bib) are provided with the CCPP. Additionally, a
configuration file is supplied, with the following variables modified from the default:

2.6.3.2. Diagrams

On its own, Doxygen is capable of creating simple text-based class diagrams.
With the help of the additional software GraphViz, Doxygen can generate
additional graphics-based diagrams, optionally in Unified Modeling Language (UML) style. To enable
GraphViz support, the configure file parameter “HAVE_DOT” must be set to “YES”.

You can use doxygen to create call graphs of all the physics schemes in CCPP.
In order to create the call graphs you will need to set the following options in
your doxygen config file:

HAVE_DOT = YES
EXTRACT_ALL = YES
EXTRACT_PRIVATE = YES
EXTRACT_STATIC = YES
CALL_GRAPH = YES

Note that will need the DOT (graph description language) utility to be installed
when starting doxygen. Doxygen will call it to generate the graphs. On most
distributions the DOT utility can be found in the GraphViz package. Here is
the call graph for subroutine mpdrv in GFDL cloud microphysics generated by doxygen:

[image: _images/DoxygenCallGraph.png]

2.6.4. Including metadata information

As described above, a table of metadata information should be included in the documentation
for every CCPP entrypoint scheme. Before doxygen is run, the table for each scheme must be manually
created in separate
files in HTML format, with one file per non-empty scheme. The HTML files are included in the
Fortran files using the doygen markup below.

!! \htmlinclude SUBROUTINE_NAME.html
!!

The tables should be created using a Python script distrbuted
with the CCPP Framework, ccpp/framework/scripts/metadata2html.py. The syntax for running this
script from the directory above where the CCPP is installed is:

./ccpp/framework/scripts/metadata2html.py -m ccpp/physics/physics/file.meta -o ccpp/physics/physics/docs

where -m is used to specify a file with metadata information and -o is used to specify
the directory for output. Note that a single input file (.meta) may have more than one CCPP entrypoint
scheme, and therefore can be used to generate more than one HTML file.

Note that the .meta files are supplied with the CCPP Physics, and that there is a .meta file for
each Fortran file that contains one or more CCPP entrypoint schemes. The .meta files are located in the same
directory as the scheme Fortran files (ccpp/physics/physics).

To generate a complete Scientific Documentation, documentation, script ./ccpp/framework/scripts/metadata2html.py
must be run separately for each .meta file available in ccpp/physics/physics. Alternatively, a batch mode exists
that converts all metadata files associated with schemes and variable definitions in the CCPP prebuild config:

./ccpp/framework/scripts/metadata2html.py -c ccpp/config/ccpp_prebuild_config.py

Note that the options -c and -m are mutually exclusive, but that one of them is required. Option -m also requires
to specify -o, while option -c will ignore -o. For more information, use

./ccpp/framework/scripts/metadata2html.py --help

2.6.5. Using Doxygen

In order to generate the doxygen-based documentation, one needs to follow five steps:

	Have the doxygen executable installed on your computer. For the NOAA
machine Hera and the NCAR machine Cheyenne, the doxygen executable resides in /usr/bin,
which should be in your $PATH. If you need to install doxygen in another location, add
the following line into the .cshrc file in your home directory:

alias doxygen /path/to/doxygen

Source your .cshrc file.

	Document your code, including doxygen main page, scheme pages and inline
comments within source code as described above.

	Run metadata2html.py to create files in HTML format containing metadata
information for each CCPP entrypoint scheme.

	Prepare a Bibliography file in BibTex format for papers referred to in the physics suites.

	Create or edit a doxygen configuration file to control what doxygen pages, source
files and bibliography file get parsed, how the source files get parsed, and to
customize the output.

	Run doxygen from directory ccpp/physics/physics/docs using the command line
to specify the doxygen configuration file as an argument:

$doxygen $PATH_TO_CONFIG_FILE/<config_file>

Running this command may generate warnings or errors that need to be fixed
in order to produce proper output. The location and type of output
(HTML, LaTeX, etc.) are specified in the configuration file.
The generated HTML documentation can be viewed by pointing an HTML
browser to the index.html file in the ./docs/doc/html/ directory.

For precise instructions on creating the scientific documentation, contact the CCPP
Forum at https://dtcenter.org/forum/ccpp-user-support.

3. CCPP Configuration and Build Options

While the CCPP-Framework code can be compiled independently, the CCPP-Physics code can only be used within a host modeling system that provides the variables and the kind, type, and DDT definitions. As such, it is advisable to integrate the CCPP configuration and build process with the host model’s. Part of the build process, known as the prebuild step since it precedes compilation, involves running a Python script that performs multiple functions. These functions include configuring the CCPP-Physics for use with the host model and autogenerating FORTRAN code to communicate variables between the physics and the dynamical core. The prebuild step will be discussed in detail in Chapter 8.

The SCM and the UFS Atmosphere are supported for use with the CCPP. In the case of the UFS Atmosphere as the host model, there are several build options. The choice can be specified through command-line options supplied to the compile.sh script for manual compilation or through a regression test (RT) configuration file. Detailed instructions for building the UFS Atmosphere and the SCM are discussed in the
UFS Weather Model User Guide [https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/BuildingAndRunning.html#building-the-weather-model] and the
SCM User Guide [https://dtcenter.org/GMTB/v5.0/scm-ccpp-guide-v5.0.pdf].

The relevant options for building CCPP with the UFS Atmosphere can be described as follows:

	Without CCPP (CCPP=N): The code is compiled without CCPP and runs using the original UFS Atmosphere physics drivers, such as GFS_physics_driver.F90. This option entirely bypasses all CCPP functionality and is only used for RT against the unmodified UFS Atmosphere codebase.

	With CCPP (CCPP=Y): The code is compiled with CCPP enabled and restricted to CCPP-compliant physics. That is, any parameterization to be called as part of a suite must be available in CCPP. Physics scheme selection and order is determined at runtime by an external suite definition file (SDF; see Chapter 4 for further details on the SDF). The existing physics-calling code GFS_physics_driver.F90 and GFS_radiation_driver.F90 are bypassed altogether in this mode and any additional code needed to connect parameterizations within a suite previously contained therein is executed from the so-called CCPP-compliant “interstitial schemes”. Compiling with CCPP links CCPP-Framework and CCPP-physics to the executable and is restricted to CCPP-compliant physics defined by one or more SDFs used at compile time.

For all options that activate the CCPP, the ccpp_prebuild.py Python script must be run. This may be done manually or as part of a host model build-time script. In the case of the SCM, ccpp_prebuild.py must be run manually, as it is not incorporated in that model’s build system. In the case of the UFS Atmosphere, ccpp_prebuild.py is run automatically as a step in the build system, although it can be run manually for debugging purposes.

The path to a host-model specific configuration file is the only required argument to ccpp_prebuild.py.
Such files are included with the SCM and ufs-weather-model repositories, and must be included with the code of
any host model to use the CCPP. Figure 3.1 depicts the main functions of the
ccpp_prebuild.py script for the build. Using information included in the configuration file
and the SDF(s), the script parses the SDF(s) and only matches provided/requested variables that are used
within the particular physics suite(s). The script autogenerates software caps for the physics suite(s) as a
whole and for each physics group as defined in the SDF(s). At runtime, a single SDF is used to select the
suite that will be executed in the run. This arrangement allows for efficient variable recall (which
is done once for all physics schemes within each group of a suite), leads to a reduced memory footprint of the
CCPP, and speeds up execution.

[image: _images/ccpp_static_build.png]

Fig. 3.1 This figure depicts an example of the interaction between an atmospheric model and CCPP-Physics for one timestep, and a single SDF, with execution progressing toward the right. The “Atmosphere Driver” box represents model superstructure code, perhaps responsible for I/O, time-stepping, and other model component interactions. Software caps are autogenerated for the suite and physics groups, defined in the SDF provided to the ccpp_prebuild.py script. The suite must be defined via the SDF at prebuild time. When multiple SDFs are provided during the build step, multiple suite caps and associated group caps are produced, but only one is used at runtime.

4. Constructing Suites

4.1. Suite Definition File

The SDF is a file in XML format used to specify the name of the suite, the physics schemes to run, groups of physics that run together, the order in which to run the physics, and whether subcycling will be used to run any of the parameterizations with shorter timesteps. The SDF files are part of the host model code.

In addition to the primary parameterization categories (such as radiation, boundary layer, deep convection, resolved moist physics, etc.), the SDF can have an arbitrary number of interstitial schemes in between the parameterizations to preprocess or postprocess data. In many models, this interstitial code is not obvious to the model user but, with the SDF, both the primary parameterizations and the interstitial schemes are listed explicitly.

The name of the suite is listed at the top of the SDF and must be consistent with the name of the SDF: file suite_ABC.xml contains suite name=’ABC’, as in the example below. The suite name is followed by the time_vary step, which is run only once when the model is first initialized.

<suite name="ABC" lib="ccppphys" ver="3.0.0">
 <!-- <init></init> -->
 <group name="time_vary">
 <subcycle loop="1">
 <scheme>GFS_time_vary_pre</scheme>
 <scheme>GFS_rrtmg_setup</scheme>
 <scheme>GFS_rad_time_vary</scheme>
 <scheme>GFS_phys_time_vary</scheme>
 </subcycle>
 </group>

4.1.1. Groups

The concept of grouping physics in the SDF (reflected in the <group name="XYZ"> elements) enables “groups” of parameterizations to be called with other computation (such as related to the dycore, I/O, etc.) in between. One can edit the groups to suit the needs of the host application. For example, if a subset of physics schemes needs to be more tightly connected with the dynamics and called more frequently, one could create a group consisting of that subset and place a ccpp_run call in the appropriate place in the host application. The remainder of the parameterization groups could be called using ccpp_run calls in a different part of the host application code.

4.1.2. Subcycling

The SDF allows subcycling of schemes, or calling a subset of schemes at a smaller time step than others. The <subcycle loop = n> element in the SDF controls this function. All schemes within such an element are called n times during one ccpp_run call. An example of this is found in the FV3_GFS_v15.xml SDF, where the surface schemes are executed twice for each timestep (implementing a predictor/corrector paradigm):

<!-- Surface iteration loop -->
<subcycle loop="2">
 <scheme>sfc_diff</scheme>
 <scheme>GFS_surface_loop_control_part1</scheme>
 <scheme>sfc_nst_pre</scheme>
 <scheme>sfc_nst</scheme>
 <scheme>sfc_nst_post</scheme>
 <scheme>lsm_noah</scheme>
 <scheme>sfc_sice</scheme>
 <scheme>GFS_surface_loop_control_part2</scheme>
</subcycle>

Note that currently no time step information is included in the SDF and that the subcycling of schemes resembles more an iteration over schemes with the loop counter being available as integer variable with standard name ccpp_loop_counter. If subcycling is used for a set of parameterizations, the smaller time step must be an input argument for those schemes.

4.1.3. Order of Schemes

Schemes may be interdependent and the order in which the schemes are run may make a difference in the model output. Reading the SDF(s) and defining the order of schemes for each suite happens at compile time.
Some schemes require additional interstitial code that must be run before or after the scheme and cannot be part of the scheme itself. This can be due to dependencies on other schemes and/or the order of the schemes as determined in the SDF. Note that more than one SDF can be supplied at compile time, but only one can be used at runtime.

4.2. Interstitial Schemes

The SDF can have an arbitrary number of additional interstitial schemes in between the primary parameterizations to preprocess or postprocess data. There are two main types of interstitial schemes, scheme-specific and suite-level. The scheme-specific interstitial scheme is needed for one specific scheme and the suite-leve interstitial scheme processes data that are relevant for various schemes within a suite.

4.3. SDF Examples

4.3.1. Simplest Case: Single Group and no Subcycling

Consider the simplest case, in which all physics schemes are to be called together in a single group with no subcycling (i.e. subcycle loop=”1”). The subcycle loop must be set in each group. The SDF suite_Suite_A.xml could contain the following:

<?xml version="1.0" encoding="UTF-8"?>
<suite name="Suite_A" lib="ccppphys" ver="3.0.0">
 ...
 <group name="physics">
 <subcycle loop="1">
 <scheme>Suite_A_interstitial_1</scheme>
 <scheme>scheme_1_pre</scheme>
 <scheme>scheme_1</scheme>
 <scheme>scheme_1_post</scheme>
 <scheme>scheme_2_generic_pre</scheme>
 <scheme>scheme_2</scheme>
 <scheme>scheme_2_generic_post</scheme>
 <scheme>Suite_A_interstitial_2</scheme>
 <scheme>scheme_3</scheme>
 ...
 <scheme_n</scheme>
 </subcycle>
 </group>
</suite>

Note the syntax of the SDF file. The root (the first element to appear in the xml file) is the suite with the name of the suite given as an attribute. In this example, the suite name is Suite_A. Within each suite are groups, which specify a physics group to call (i.e. physics, fast_physics, time_vary, radiation, stochastics). Each group has an option to subcycle. The value given for loop determines the number of times all of the schemes within the subcycle element are called. Finally, the scheme elements are children of the subcycle elements and are listed in the order they will be executed. In this example, scheme_1_pre and scheme_1_post are scheme-specific preprocessing and postprocessing interstitial schemes, respectively. The suite-level preprocessing and postprocessing interstitial schemes scheme_2_generic_pre and scheme_2_generic_post are also called in this example. Suite_A_interstitial_2 is a scheme for suite_A and connects various schemes within this suite.

4.3.2. Case with Multiple Groups

Some models require that the physics be called in groups, with non-physics computations in-between the groups.

<?xml version="1.0" encoding="UTF-8"?>
<suite name="Suite_B" lib="ccppphys" ver="3.0.0">
 <group name="g1">
 <subcycle loop="1">
 <scheme>SchemeX</scheme>
 <scheme>SchemeY</scheme>
 <scheme>SchemeZ</scheme>
 </subcycle>
 </group>
 <group name="g2">
 <subcycle loop="1">
 <scheme>SchemeA</scheme>
 <scheme>SchemeB</scheme>
 <scheme>SchemeC</scheme>
 </subcycle>
 </group>
</suite>

4.3.3. Case with Subcycling

Consider the case where a model requires that some subset of physics be called on a smaller time step than the rest of the physics, e.g. for computational stability. In this case, one would make use of the subcycle element as follows:

<?xml version="1.0" encoding="UTF-8"?>
<suite name="Suite_C" lib="ccppphys" ver="3.0.0">
 <group name="g1">
 <subcycle loop="1">
 <scheme>scheme_1</scheme>
 <scheme>scheme_2</scheme>
 </subcycle>
 <subcycle loop="2">
 <!-- block of schemes 3 and 4 is called twice -->
 <scheme>scheme_3</scheme>
 <scheme>scheme_4</scheme>
 </subcycle>
 </group>
</suite>

4.3.4. GFS v16beta Suite

Here is the SDF for the physics suite equivalent to the GFS v16beta in the Single Column Model (SCM), which employs various groups and subcycling:

<?xml version="1.0" encoding="UTF-8"?>

<suite name="SCM_GFS_v16beta" version="1">
 <group name="time_vary">
 <subcycle loop="1">
 <scheme>GFS_time_vary_pre</scheme>
 <scheme>GFS_rrtmg_setup</scheme>
 <scheme>GFS_rad_time_vary</scheme>
 <scheme>GFS_phys_time_vary</scheme>
 </subcycle>
 </group>
 <group name="radiation">
 <subcycle loop="1">
 <scheme>GFS_suite_interstitial_rad_reset</scheme>
 <scheme>GFS_rrtmg_pre</scheme>
 <scheme>rrtmg_sw_pre</scheme>
 <scheme>rrtmg_sw</scheme>
 <scheme>rrtmg_sw_post</scheme>
 <scheme>rrtmg_lw_pre</scheme>
 <scheme>rrtmg_lw</scheme>
 <scheme>rrtmg_lw_post</scheme>
 <scheme>GFS_rrtmg_post</scheme>
 </subcycle>
 </group>
 <group name="physics">
 <subcycle loop="1">
 <scheme>GFS_suite_interstitial_phys_reset</scheme>
 <scheme>GFS_suite_stateout_reset</scheme>
 <scheme>get_prs_fv3</scheme>
 <scheme>GFS_suite_interstitial_1</scheme>
 <scheme>GFS_surface_generic_pre</scheme>
 <scheme>GFS_surface_composites_pre</scheme>
 <scheme>dcyc2t3</scheme>
 <scheme>GFS_surface_composites_inter</scheme>
 <scheme>GFS_suite_interstitial_2</scheme>
 </subcycle>
 <!-- Surface iteration loop -->
 <subcycle loop="2">
 <scheme>sfc_diff</scheme>
 <scheme>GFS_surface_loop_control_part1</scheme>
 <scheme>sfc_nst_pre</scheme>
 <scheme>sfc_nst</scheme>
 <scheme>sfc_nst_post</scheme>
 <scheme>lsm_noah</scheme>
 <scheme>sfc_sice</scheme>
 <scheme>GFS_surface_loop_control_part2</scheme>
 </subcycle>
 <!-- End of surface iteration loop -->
 <subcycle loop="1">
 <scheme>GFS_surface_composites_post</scheme>
 <scheme>sfc_diag</scheme>
 <scheme>sfc_diag_post</scheme>
 <scheme>GFS_surface_generic_post</scheme>
 <scheme>GFS_PBL_generic_pre</scheme>
 <scheme>satmedmfvdifq</scheme>
 <scheme>GFS_PBL_generic_post</scheme>
 <scheme>GFS_GWD_generic_pre</scheme>
 <scheme>cires_ugwp</scheme>
 <scheme>cires_ugwp_post</scheme>
 <scheme>GFS_GWD_generic_post</scheme>
 <scheme>rayleigh_damp</scheme>
 <scheme>GFS_suite_stateout_update</scheme>
 <scheme>ozphys_2015</scheme>
 <scheme>h2ophys</scheme>
 <scheme>get_phi_fv3</scheme>
 <scheme>GFS_suite_interstitial_3</scheme>
 <scheme>GFS_DCNV_generic_pre</scheme>
 <scheme>samfdeepcnv</scheme>
 <scheme>GFS_DCNV_generic_post</scheme>
 <scheme>GFS_SCNV_generic_pre</scheme>
 <scheme>samfshalcnv</scheme>
 <scheme>GFS_SCNV_generic_post</scheme>
 <scheme>GFS_suite_interstitial_4</scheme>
 <scheme>cnvc90</scheme>
 <scheme>GFS_MP_generic_pre</scheme>
 <scheme>gfdl_cloud_microphys</scheme>
 <scheme>GFS_MP_generic_post</scheme>
 <scheme>maximum_hourly_diagnostics</scheme>
 <scheme>phys_tend</scheme>
 </subcycle>
 </group>
</suite>

The suite name is SCM_GFS_v16beta. Three groups (time_vary, radiation, and physics) are used, because the physics needs to be called in different parts of the host model. The detailed explanation of each primary physics scheme can be found in scientific documentation. A short explanation of each scheme is below.

	GFS_time_vary_pre: GFS physics suite time setup

	GFS_rrtmg_setup: Rapid Radiative Transfer Model for Global Circulation Models (RRTMG) setup

	GFS_rad_time_vary: GFS radiation time setup

	GFS_phys_time_vary: GFS physics suite time setup

	GFS_suite_interstitial_rad_reset: GFS suite interstitial radiation reset

	GFS_rrtmg_pre: Preprocessor for the GFS radiation schemes

	rrtmg_sw_pre: Preprocessor for the RRTMG shortwave radiation

	rrtmg_sw: RRTMG for shortwave radiation

	rrtmg_sw_post: Postprocessor for the RRTMG shortwave radiation

	rrtmg_lw_pre: Preprocessor for the RRTMG longwave radiation

	rrtmg_lw: RRTMG for longwave radiation

	rrtmg_lw_post: Postprocessor for the RRTMG longwave radiation

	GFS_rrtmg_post: Postprocessor for the GFS radiation schemes

	GFS_suite_interstitial_phys_reset: GFS suite interstitial physics reset

	GFS_suite_stateout_reset: GFS suite stateout reset

	get_prs_fv3: Adjustment of the geopotential height hydrostatically in a way consistent with FV3 discretization

	GFS_suite_interstitial_1: GFS suite interstitial 1

	GFS_surface_generic_pre: Preprocessor for the surface schemes (land, sea ice)

	GFS_surface_composites_pre: Preprocessor for surafce composites

	dcyc2t3: Mapping of the radiative fluxes and heating rates from the coarser radiation timestep onto the model’s more frequent time steps

	GFS_surface_composites_inter: Interstitial for the surface composites

	GFS_suite_interstitial_2: GFS suite interstitial 2

	sfc_diff: Calculation of the exchange coefficients in the GFS surface layer

	GFS_surface_loop_control_part1: GFS surface loop control part 1

	sfc_nst_pre: Preprocessor for the near-surface sea temperature

	sfc_nst: GFS Near-surface sea temperature

	sfc_nst_post: Postprocessor for the near-surface temperature

	lsm_noah: Noah land surface scheme driver

	sfc_sice: Simple sea ice scheme

	GFS_surface_loop_control_part2: GFS surface loop control part 2

	GFS_surface_composites_post: Postprocess for surface composites

	sfc_diag: Land surface diagnostic calculation

	sfc_diag_post: Postprocessor for the land surface diagnostic calculation

	GFS_surface_generic_post: Postprocessor for the GFS surface process

	GFS_PBL_generic_pre: Preprocessor for all Planetary Boundary Layer (PBL) schemes (except MYNN)

	satmedmfvdifq: Scale-aware TKE-based moist eddy-diffusion mass-flux

	GFS_PBL_generic_post: Postprocessor for all Planetary Boundary Layer (PBL) schemes (except MYNN)

	GFS_GWD_generic_pre: Preprocessor for the orographic gravity wave drag

	cires_ugwp: Unified gravity wave drag

	cires_ugwp_post: Postprocessor for the unified gravity wave drag

	GFS_GWD_generic_post: Postprocessor for the GFS gravity wave drag

	rayleigh_damp: Rayleigh damping

	GFS_suite_stateout_update: GFS suite stateout update

	ozphys_2015: Ozone photochemistry

	h2ophys: H2O physics for stratosphere and mesosphere

	get_phi_fv3: Hydrostatic adjustment to the height in a way consistent with FV3 discretization

	GFS_suite_interstitial_3: GFS suite interstitial 3

	samfdeepcnv: Simplified Arakawa Schubert (SAS) Mass Flux deep convection

	GFS_DCNV_generic_post: Postprocessor for all deep convective schemes

	GFS_SCNV_generic_pre: Preprocessor for the GFS shallow convective schemes

	samfshalcnv: SAS mass flux shallow convection

	GFS_SCNV_generic_post: Postprocessor for the GFS shallow convective scheme

	GFS_suite_interstitial_4: GFS suite interstitial 4

	cnvc90: Convective cloud cover

	GFS_MP_generic_pre: Preprocessor for all GFS microphysics

	gfdl_cloud_microphys: GFDL cloud microphysics

	GFS_MP_generic_post: Postprocessor for GFS microphysics

	maximum_hourly_diagnostics: Computation of the maximum of the selected diagnostics

	phys_tend: Physics tendencies

5. Suite and Group Caps

The connection between the host model and the physics schemes through the CCPP-Framework
is realized with caps on both sides as illustrated in Figure 1.1.
The CCPP prebuild script discussed in Chapter 3
generates the caps that connect the physics schemes to the CCPP-Framework.
This chapter describes the suite and group caps,
while the host model caps are described in Chapter 6.
These caps autogenerated by ccpp_prebuild.py reside in the directory
defined by the CAPS_DIR variable (see example in Listing 8.1).

5.1. Overview

When CCPP is built, the CCPP-Framework and physics are statically linked to the executable. This allows the best
performance and efficient memory use. This build requires metadata provided
by the host model and variables requested from the physics scheme. Only the variables required for
the specified suites are kept, requiring one or more SDFs (see left side of Figure 3.1)
as arguments to the ccpp_prebuild.py script.
The CCPP prebuild step performs the tasks below.

	Check requested vs provided variables by standard_name.

	Check units, rank, type. Perform unit conversions if a mismatch
of units is detected and the required conversion has been implemented (see
Section 5.2 for details).

	Filter unused schemes and variables.

	Create Fortran code for the static Application Programming Interface (API).

	Create caps for groups and suite(s).

	Populate makefiles with schemes and caps.

The prebuild step will produce the following files for the UFS Atmosphere:

	List of variables provided by host model and required by physics:

ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES_FV3.tex

	Makefile snippets that contain all caps to be compiled:

ccpp/physics/CCPP_CAPS.{cmake,mk}

	Makefile snippets that contain all schemes to be compiled:

ccpp/physics/CCPP_SCHEMES.{cmake,mk}

	List of CCPP types:

ccpp/physics/CCPP_TYPEDEFS.{cmake,mk}

	List of variables provided by host model:

ccpp/physics/CCPP_VARIABLES_FV3.html

	One cap per physics group (fast_physics, physics, radiation, time_vary, stochastic, …) for each suite:

ccpp/physics/ccpp_{suite_name}_{group_name}_cap.F90

	Cap for each suite:

ccpp/physics/ccpp_{suite_name}_cap.F90

	Autogenerated API (aka CCPP-Framework).

FV3/gfsphysics/CCPP_layer/ccpp_static_api.F90

ccpp_static_api.F90 is an interface,
which contains subroutines ccpp_physics_init, ccpp_physics_run and ccpp_physics_finalize.
Each subroutine uses a suite_name and an optional argument, group_name, to call the groups
of a specified suite (e.g. fast_physics, physics, time_vary, radiation, stochastic, etc.),
or to call the entire suite. For example, ccpp_static_api.F90 would contain module ccpp_static_api
with subroutines ccpp_physics_{init, run, finalize}. The subroutine ccpp_physics_init from the
autogenerated code using suites FV3_GFS_v15 and FV3_CPT_v0 is shown in Listing 5.2.

subroutine ccpp_physics_init(cdata, suite_name, group_name, ierr)
 use ccpp_types, only : ccpp_t
 implicit none
 type(ccpp_t), intent(inout) :: cdata
 character(len=*), intent(in) :: suite_name
 character(len=*), optional, intent(in) :: group_name
 integer, intent(out) :: ierr
 ierr = 0
 if (trim(suite_name)=="FV3_GFS_v15") then
 if (present(group_name)) then
 if (trim(group_name)=="fast_physics") then
 ierr = FV3_GFS_v15_fast_physics_init_cap(cdata=cdata, CCPP_interstitial=CCPP_interstitial)
 else if (trim(group_name)=="time_vary") then
 ierr = FV3_GFS_v15_time_vary_init_cap(GFS_Interstitial=GFS_Interstitial, &
 cdata=cdata,GFS_Data=GFS_Data, GFS_Control=GFS_Control)
 else if (trim(group_name)=="radiation") then
 ierr = FV3_GFS_v15_radiation_init_cap()
 else if (trim(group_name)=="physics") then
 ierr = FV3_GFS_v15_physics_init_cap(cdata=cdata, GFS_Control=GFS_Control)
 else if (trim(group_name)=="stochastics") then
 ierr = FV3_GFS_v15_stochastics_init_cap()
 else
 write(cdata%errmsg, '(*(a))') "Group " // trim(group_name) // " not found"
 ierr = 1
 end if
 else
 ierr = FV3_GFS_v15_init_cap(GFS_Interstitial=GFS_Interstitial, cdata=cdata,GFS_Control=GFS_Control, &
 GFS_Data=GFS_Data, CCPP_interstitial=CCPP_interstitial)
 end if
 else if (trim(suite_name)=="FV3_CPT_v0") then
 if (present(group_name)) then
 if (trim(group_name)=="time_vary") then
 ierr = FV3_CPT_v0_time_vary_init_cap(GFS_Interstitial=GFS_Interstitial, &
 cdata=cdata,GFS_Data=GFS_Data, GFS_Control=GFS_Control)
 else if (trim(group_name)=="radiation") then
 ierr = FV3_CPT_v0_radiation_init_cap()
 else if (trim(group_name)=="physics") then
 ierr = FV3_CPT_v0_physics_init_cap(con_hfus=con_hfus, &
 GFS_Control=GFS_Control,con_hvap=con_hvap, &
 con_rd=con_rd,con_rv=con_rv,con_g=con_g, &
 con_ttp=con_ttp,con_cp=con_cp,cdata=cdata)
 else if (trim(group_name)=="stochastics") then
 ierr = FV3_CPT_v0_stochastics_init_cap()
 else
 write(cdata%errmsg, '(*(a))') "Group " // trim(group_name) // " not found"
 ierr = 1
 end if
 else
 ierr = FV3_CPT_v0_init_cap(con_g=con_g, GFS_Data=GFS_Data,GFS_Control=GFS_Control, &
 con_hvap=con_hvap,GFS_Interstitial=GFS_Interstitial, con_rd=con_rd,con_rv=con_rv, &
 con_hfus=con_hfus, con_ttp=con_ttp,con_cp=con_cp,cdata=cdata)
 end if
 else
 write(cdata%errmsg,'(*(a))'), 'Invalid suite ' // trim(suite_name)
 ierr = 1
 end if
 cdata%errflg = ierr
end subroutine ccpp_physics_init

Listing 5.2: Code sample of subroutine ccpp_physics_init contained in the autogenerated file
ccpp_static_api.F90 for the multi-suite build. This cap was generated using suites
FV3_GFS_v15 and FV3_CPT_v0. Examples of the highlighted functions are shown below in
Listing 5.3 and Listing 5.4.

Note that if group_name is set, specified groups (i.e. FV3_GFS_v15_physics_init_cap) are called for the
specified suite_name. These functions are defined in ccpp_{suite_name}_{group_name}_cap.F90, in this
case ccpp_FV3_GFS_v15_physics_cap.F90. For example:

function FV3_GFS_v15_physics_init_cap(cdata,GFS_Control)&
 result(ierr)
 use ccpp_types, only: ccpp_t
 use GFS_typedefs, only: GFS_control_type
 implicit none
 integer :: ierr
 type(ccpp_t), intent(inout) :: cdata
 type(GFS_control_type), intent(in) :: GFS_Control
 ierr = 0
 if (initialized) return
 call lsm_noah_init(me=GFS_Control%me,isot=GFS_Control%isot,&
 ivegsrc=GFS_Control%ivegsrc,nlunit=GFS_Control%nlunit, &
 errmsg=cdata%errmsg,errflg=cdata%errflg)
 if (cdata%errflg/=0) then
 write(cdata%errmsg,'(a)') "An error occured in lsm_noah_init"
 ierr=cdata%errflg
 return
 end if
 call gfdl_cloud_microphys_init(me=GFS_Control%me, &
 master=GFS_Control%master,nlunit=GFS_Control%nlunit, &
 input_nml_file=GFS_Control%input_nml_file, &
 logunit=GFS_Control%logunit,fn_nml=GFS_Control%fn_nml, &
 imp_physics=GFS_Control%imp_physics, &
 imp_physics_gfdl=GFS_Control%imp_physics_gfdl, &
 do_shoc=GFS_Control%do_shoc, &
 errmsg=cdata%errmsg,errflg=cdata%errflg)
 if (cdata%errflg/=0) then
 write(cdata%errmsg,'(a)') "An error occured in &
 gfdl_cloud_microphys_init"
 ierr=cdata%errflg
 return
 end if
 initialized = .true.
end function FV3_GFS_v15_physics_init_cap

Listing 5.3: The FV3_GFS_v15_physics_init_cap contained in the autogenerated file
ccpp_FV3_GFS_v15_physics_cap.F90 showing calls to the lsm_noah_init , and
gfdl_cloud_microphys_init subroutines for the build for suite ‘FV3_GFS_v15’ and group ‘physics’.

If the group_name is not specified for a specified suite_name, the suite is called from the autogenerated
ccpp_static_api.F90, which calls the init, run and finalize routines for each group.
Listing 5.4 is an example of FV3_GFS_v15_init_cap.

function FV3_GFS_v15_init_cap(GFS_Interstitial, &
 cdata,GFS_Control,GFS_Data,CCPP_interstitial) result(ierr)
 use GFS_typedefs, only: GFS_interstitial_type
 use ccpp_types, only: ccpp_t
 use GFS_typedefs, only: GFS_control_type
 use GFS_typedefs, only: GFS_data_type
 use CCPP_typedefs, only: CCPP_interstitial_type

 implicit none

 integer :: ierr
 type(GFS_interstitial_type), intent(inout) :: GFS_Interstitial(:)
 type(ccpp_t), intent(inout) :: cdata
 type(GFS_control_type), intent(inout) :: GFS_Control
 type(GFS_data_type), intent(inout) :: GFS_Data(:)
 type(CCPP_interstitial_type), intent(in) :: CCPP_interstitial

 ierr = 0
 ierr = FV3_GFS_v15_fast_physics_init_cap(cdata=cdata, CCPP_interstitial=CCPP_interstitial)
 if (ierr/=0) return

 ierr = FV3_GFS_v15_time_vary_init_cap (GFS_Interstitial=GFS_Interstitial,cdata=cdata, &
 GFS_Data=GFS_Data,GFS_Control=GFS_Control)
 if (ierr/=0) return

 ierr = FV3_GFS_v15_radiation_init_cap()
 if (ierr/=0) return
 ierr = FV3_GFS_v15_physics_init_cap(cdata=cdata, &
 GFS_Control=GFS_Control)
 if (ierr/=0) return

 ierr = FV3_GFS_v15_stochastics_init_cap()
 if (ierr/=0) return
end function FV3_GFS_v15_init_cap

Listing 5.4: Condensed version of the FV3_GFS_v15_init_cap function contained in the autogenerated
file ccpp_FV3_GFS_v15_cap.F90 showing calls to the group caps
FV3_GFS_v15_fast_physics_init_cap, FV3_GFS_v15_time_vary_init_cap , etc.
for the build where a group name is not specified.

5.2. Automatic unit conversions

The CCPP framework is capable of performing automatic unit conversions if a mismatch of
units between the host model and a physics scheme is detected, provided that the required
unit conversion has been implemented.

If a mismatch of units is detected and an automatic unit conversion can be performed,
the CCPP prebuild script will document this with a log message as in the following example:

INFO: Comparing metadata for requested and provided variables ...
INFO: Automatic unit conversion from m to um for effective_radius_of_stratiform_cloud_ice_particle_in_um after returning from MODULE_mp_thompson SCHEME_mp_thompson SUBROUTINE_mp_thompson_run
INFO: Automatic unit conversion from m to um for effective_radius_of_stratiform_cloud_liquid_water_particle_in_um after returning from MODULE_mp_thompson SCHEME_mp_thompson SUBROUTINE_mp_thompson_run
INFO: Automatic unit conversion from m to um for effective_radius_of_stratiform_cloud_snow_particle_in_um after returning from MODULE_mp_thompson SCHEME_mp_thompson SUBROUTINE_mp_thompson_run
INFO: Generating schemes makefile/cmakefile snippet ...

The CCPP framework is performing only the minimum unit conversions necessary, depending on the
intent information of the variable in the parameterization’s metadata table. In the above example,
the cloud effective radii are intent(out) variables, which means that no unit conversion is required
before entering the subroutine mp_thompson_run. Below are examples for auto-generated code performing
automatic unit conversions from m to um or back, depending on the intent of the variable. The conversions
are performed in the individual physics scheme caps for the dynamic build, or the group caps for the build.

! var1 is intent(in)
 call mp_thompson_run(...,recloud=1.0E-6_kind_phys*re_cloud,...,errmsg=cdata%errmsg,errflg=cdata%errflg)
 ierr=cdata%errflg

! var1 is intent(inout)
 allocate(tmpvar1, source=re_cloud)
 tmpvar1 = 1.0E-6_kind_phys*re_cloud
 call mp_thompson_run(...,re_cloud=tmpvar1,...,errmsg=cdata%errmsg,errflg=cdata%errflg)
 ierr=cdata%errflg
 re_cloud = 1.0E+6_kind_phys*tmpvar1
 deallocate(tmpvar1)

! var1 is intent(out)
 allocate(tmpvar1, source=re_cloud)
 call mp_thompson_run(...,re_cloud=tmpvar1,...,errmsg=cdata%errmsg,errflg=cdata%errflg)
 ierr=cdata%errflg
 re_cloud = 1.0E+6_kind_phys*tmpvar1
 deallocate(tmpvar1)

If a required unit conversion has not been implemented the CCPP prebuild script will generate an error message as follows:

INFO: Comparing metadata for requested and provided variables ...
ERROR: Error, automatic unit conversion from m to pc for effective_radius_of_stratiform_cloud_ice_particle_in_um in MODULE_mp_thompson SCHEME_mp_thompson SUBROUTINE_mp_thompson_run not implemented

All automatic unit conversions are implemented in ccpp/framework/scripts/conversion_tools/unit_conversion.py,
new unit conversions can be added to this file by following the existing examples.

6. Host Side Coding

This chapter describes the connection of a host model with the pool of CCPP-Physics schemes through the CCPP-Framework.

In several places, references are made to an Interoperable Physics Driver (IPD). The IPD was originally developed by EMC and later expanded by NOAA GFDL with the goal of connecting GFS physics to various models. A top motivation for its development was the dycore test that led to the selection of FV3 as the dycore for the UFS. Designed in a fundamentally different way than the CCPP, the IPD will be phased out in the near future in favor of the CCPP as a single way to interface with physics in the UFS. To enable a smooth transition, several of the CCPP components must interact with the IPD and, as such, parts of the CCPP code in the UFS currently carry the tag “IPD”.

6.1. Variable Requirements on the Host Model Side

All variables required to communicate between the host model and the physics, as well as to communicate between physics schemes, need to be allocated by the host model. An exception is variables errflg, errmsg, loop_cnt, blk_no, and thrd_no, which are allocated by the CCPP-Framework, as explained in Section 6.4.1. A list of all variables required for the current pool of physics can be found in ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES_XYZ.pdf (XYZ: SCM, FV3).

At present, only two types of variable definitions are supported by the CCPP-Framework:

	Standard Fortran variables (character, integer, logical, real) defined in a module or in the main program. For character variables, a fixed length is required. All others can have a kind attribute of a kind type defined by the host model.

	Derived data types (DDTs) defined in a module or the main program. While the use of DDTs as arguments to physics schemes in general is discouraged (see Section 2.2), it is perfectly acceptable for the host model to define the variables requested by physics schemes as components of DDTs and pass these components to CCPP by using the correct local_name (e.g., myddt%thecomponentIwant; see Section 6.2.)

6.2. Metadata for Variable in the Host Model

To establish the link between host model variables and physics scheme variables, the host model must provide metadata information similar to those presented in Section 2.2. The host model can have multiple metadata files (.meta) with multiple metadata sections in each file
([ccpp-arg-table]) or just one. The host model Fortran files contain three-line snippets to indicate the location for insertion of the
metadata information contained in the corresponding section in the .meta file.

!!> \section arg_table_example_vardefs
!! \htmlinclude example_vardefs.html
!!

For each variable required by the pool of CCPP-Physics schemes, one and only one entry must exist on the host model side. The connection between a variable in the host model and in the physics scheme is made through its standard_name.

The following requirements must be met when defining metadata for variables in the host model (see also Listing 6.1
and Listing 6.2 for examples of host model metadata).

	The standard_name must match that of the target variable in the physics scheme.

	The type, kind, shape and size of the variable (as defined in the host model Fortran code) must match that of the target variable.

	The attributes units, rank, type and kind in the host model metadata must match those in the physics scheme metadata.

	The attribute active is used to allocate variables under certain conditions. It must be written as a Fortran expression that equates to .true. or .false., using the CCPP standard names of variables. active attributes for all variables are .true. by default. See Section 6.2.1 for details.

	The attributes optional and intent must be set to F and none, respectively.

	The local_name of the variable must be set to the name the host model cap uses to refer to the variable.

	The metadata section that exposes a DDT to the CCPP (as opposed to the section that describes the components of a DDT) must be in the same module where the memory for the DDT is allocated. If the DDT is a module variable, then it must be exposed via the module’s metadata section, which must have the same name as the module.

	Metadata sections describing module variables must be placed inside the module.

	Metadata sections describing components of DDTs must be placed immediately before the type definition and have the same name as the DDT.

 module example_vardefs

 implicit none

!!> \section arg_table_example_vardefs
!! \htmlinclude example_vardefs.html
!!

 integer, parameter :: r15 = selected_real_kind(15)
 integer :: ex_int
 real(kind=8), dimension(:,:) :: ex_real1
 character(len=64) :: errmsg
 logical :: errflg

!!> \section arg_table_example_ddt
!! \htmlinclude example_ddt.html
!!

 type ex_ddt
 logical :: l
 real, dimension(:,:) :: r
 end type ex_ddt

 type(ex_ddt) :: ext

 end module example_vardefs

Listing 6.1: Example host model file with reference to metadata. In this example, both the definition and the declaration (memory allocation) of a DDT ext (of type ex_ddt) are in the same module.

[ccpp-arg-table]
 name = arg_table_example_vardefs
 type = module
[ex_int]
 standard_name = example_int
 long_name = ex. int
 units = none
 dimensions = ()
 type = integer
 kind =
[ex_real]
 standard_name = example_real
 long_name = ex. real
 units = m
 dimensions = (horizontal_dimension,vertical_dimension)
 type = real
 kind = kind=8
[ex_ddt]
 standard_name = example_ddt
 long_name = ex. ddt
 units = DDT
 dimensions = (horizontal_dimension,vertical_dimension)
 type = ex_ddt
 kind =
[ext]
 standard_name = example_ddt_instance
 long_name = ex. ddt inst
 units = DDT
 dimensions = (horizontal_dimension,vertical_dimension)
 type = ex_ddt
 kind =
[errmsg]
 standard_name = ccpp_error_message
 long_name = error message for error handling in CCPP
 units = none
 dimensions = ()
 type = character
 kind = len=64
[errflg]
 standard_name = ccpp_error_flag
 long_name = error flag for error handling in CCPP
 units = flag
 dimensions = ()
 type = integer

##
[ccpp-arg-table]
 name = arg_table_example_ddt
 type = ddt
[ext%1]
 standard_name = example_flag
 long_name = ex. flag
 units = flag
 dimensions =
 type = logical
 kind =
[ext%r]
 standard_name = example_real3
 long_name = ex. real
 units = kg
 dimensions = (horizontal_dimension,vertical_dimension)
 type = real
 kind = r15
[ext%r(;,1)]
 standard_name = example_slice
 long_name = ex. slice
 units = kg
 dimensions = (horizontal_dimension,vertical_dimension)
 type = real
 kind = r15
[nwfa2d]
 standard_name = tendency_of_water_friendly_aerosols_at_surface
 long_name = instantaneous water-friendly sfc aerosol source
 units = kg-1 s-1
 dimensions = (horizontal_dimension)
 type = real
 kind = kind_phys
 active = (flag_for_microphysics_scheme == flag_for_thompson_microphysics_scheme .and. flag_for_aerosol_physics)
[qgrs(:,:,index_for_water_friendly_aerosols)]
 standard_name = water_friendly_aerosol_number_concentration
 long_name = number concentration of water-friendly aerosols
 units = kg-1
 dimensions = (horizontal_dimension,vertical_dimension)
 active = (index_for_water_friendly_aerosols > 0)
 type = real
 kind = kind_phys

Listing 6.2: Example host model metadata file (.meta).

6.2.1. Active Attribute

The CCPP must be able to detect when arrays need to be allocated, and when certain tracers must be
present in order to perform operations or tests in the auto-generated caps (e.g. unit conversions,
blocked data structure copies, etc.). This is accomplished with the attribute active in the
metadata for the host model variables (GFS_typedefs.meta for the UFS Atmosphere or the SCM).

Several arrays in the host model (e.g., GFS_typedefs.F90 in the UFS Atmosphere or the SCM) are
allocated based on certain conditions, for example:

!--- needed for Thompson's aerosol option
if(Model%imp_physics == Model%imp_physics_thompson .and. Model%ltaerosol) then
 allocate (Coupling%nwfa2d (IM))
 allocate (Coupling%nifa2d (IM))
 Coupling%nwfa2d = clear_val
 Coupling%nifa2d = clear_val
endif

Other examples are the elements in the tracer array, where their presence depends on the corresponding
index being larger than zero. For example:

integer :: ntwa !< tracer index for water friendly aerosol
...
Model%ntwa = get_tracer_index(Model%tracer_names, 'liq_aero', ...)
...
if (Model%ntwa>0) then
 ! do something with qgrs(:,:,Model%ntwa)
end if

The active attribute is a conditional statement that, if true, will allow the corresponding variable
to be allocated. It must be written as a Fortran expression that equates to .true. or .false.,
using the CCPP standard names of variables. Active attributes for all variables are .true. by default.

If a developer adds a new variable that is only allocated under certain conditions, or changes the conditions
under which an existing variable is allocated, a corresponding change must be made in the metadata for the
host model variables (GFS_typedefs.meta for the UFS Atmosphere or the SCM). See variables nwfa2d
and qgrs in Listing 6.2 for an example.

6.3. CCPP Variables in the SCM and UFS Atmosphere Host Models

While the use of standard Fortran variables is preferred, in the current implementation of the CCPP in the UFS Atmosphere and in the SCM almost all data is contained in DDTs for organizational purposes. In the case of the SCM, DDTs are defined in gmtb_scm_type_defs.f90 and GFS_typedefs.F90, and in the case of the UFS Atmosphere, they are defined in both GFS_typedefs.F90 and CCPP_typedefs.F90. The current implementation of the CCPP in both host models uses the following set of DDTs:

	GFS_init_type variables to allow proper initialization of GFS physics

	GFS_statein_type prognostic state data provided by dycore to physics

	GFS_stateout_type prognostic state after physical parameterizations

	GFS_sfcprop_type surface properties read in and/or updated by climatology, obs, physics

	GFS_coupling_type fields from/to coupling with other components, e.g., land/ice/ocean

	GFS_control_type control parameters input from a namelist and/or derived from others

	GFS_grid_type grid data needed for interpolations and length-scale calculations

	GFS_tbd_type data not yet assigned to a defined container

	GFS_cldprop_type cloud properties and tendencies needed by radiation from physics

	GFS_radtend_type radiation tendencies needed by physics

	GFS_diag_type fields targeted for diagnostic output to disk

	GFS_interstitial_type fields used to communicate variables among schemes in the slow physics group required to replace interstitial code in GFS_{physics, radiation}_driver.F90 in CCPP

	GFS_data_type combined type of all of the above except GFS_control_type and GFS_interstitial_type

	CCPP_interstitial_type fields used to communicate variables among schemes in the fast physics group

The DDT descriptions provide an idea of what physics variables go into which data type. GFS_diag_type can contain variables that accumulate over a certain amount of time and are then zeroed out. Variables that require persistence from one timestep to another should not be included in the GFS_diag_type nor the GFS_interstitial_type DDTs. Similarly, variables that need to be shared between groups cannot be included in the GFS_interstitial_type DDT. Although this memory management is somewhat arbitrary, new variables provided by the host model or derived in an interstitial scheme should be put in a DDT with other similar variables.

Each DDT contains a create method that allocates the data defined using the metadata. For example, the GFS_stateout_type contains:

type GFS_stateout_type

 !-- Out (physics only)
 real (kind=kind_phys), pointer :: gu0 (:,:) => null() !< updated zonal wind
 real (kind=kind_phys), pointer :: gv0 (:,:) => null() !< updated meridional wind
 real (kind=kind_phys), pointer :: gt0 (:,:) => null() !< updated temperature
 real (kind=kind_phys), pointer :: gq0 (:,:,:) => null() !< updated tracers

 contains
 procedure :: create => stateout_create !< allocate array data
 end type GFS_stateout_type

In this example, gu0, gv0, gt0, and gq0 are defined in the host-side metadata section, and when the subroutine stateout_create is called, these arrays are allocated and initialized to zero. With the CCPP, it is possible to not only refer to components of DDTs, but also to slices of arrays with provided metadata as long as these are contiguous in memory. An example of an array slice from the GFS_stateout_type looks like:

[ccpp-arg-table]
 name = GFS_stateout_type
 type = ddt
[gq0(:,:,index_for_snow_water)]
 standard_name = snow_water_mixing_ratio_updated_by_physics
 long_name = moist (dry+vapor, no condensates) mixing ratio of snow water updated by physics
 units = kg kg-1
 dimensions = (horizontal_dimension,vertical_dimension)
 type = real
 kind = kind_phys

Array slices can be used by physics schemes that only require certain values from an array.

6.4. CCPP API

The CCPP Application Programming Interface (API) is comprised of a set of clearly defined methods used to communicate variables between the host model and the physics and to run the physics. The bulk of the CCPP API is located in the CCPP-Framework, and is described in file ccpp_static_api.F90. Subroutines ccpp_physics_init, ccpp_physics_finalize, and ccpp_physics_run (described below) are contained in ccpp_static_api.F90. ccpp_static_api.F90 is auto-generated when the script ccpp_prebuild.py is run for the build.

6.4.1. Data Structure to Transfer Variables between Dynamics and Physics

The cdata structure is used for holding five variables that must always be available to the physics schemes. These variables are listed in a metadata table in ccpp/framework/src/ccpp_types.meta (Listing 6.3).

	Error flag for handling in CCPP (errmsg).

	Error message associated with the error flag (errflg).

	Loop counter for subcycling loops (loop_cnt).

	Number of block for explicit data blocking in CCPP (blk_no).

	Number of thread for threading in CCPP (thrd_no).

[ccpp-arg-table]
 name = ccpp_t
 type = scheme
[errflg]
 standard_name = ccpp_error_flag
 long_name = error flag for error handling in CCPP
 units = flag
 dimensions = ()
 type = integer
[errmsg]
 standard_name = ccpp_error_message
 long_name = error message for error handling in CCPP
 units = none
 dimensions = ()
 type = character
 kind = len=512
[loop_cnt]
 standard_name = ccpp_loop_counter
 long_name = loop counter for subcycling loops in CCPP
 units = index
 dimensions = ()
 type = integer
[blk_no]
 standard_name = ccpp_block_number
 long_name = number of block for explicit data blocking in CCPP
 units = index
 dimensions = ()
 type = integer
[thrd_no]
 standard_name = ccpp_thread_number
 long_name = number of thread for threading in CCPP
 units = index
 dimensions = ()
 type = integer

Listing 6.3: Mandatory variables provided by the CCPP-Framework from ccpp/framework/src/ccpp_types.meta .
These variables must not be defined by the host model.

Two of the variables are mandatory and must be passed to every physics scheme: errmsg and errflg. The variables loop_cnt, blk_no, and thrd_no can be passed to the schemes if required, but are not mandatory. The cdata structure is only used to hold these five variables, since the host model variables are directly passed to the physics without the need for an intermediate data structure.

Note that cdata is not restricted to being a scalar but can be a multidimensional array, depending on the needs of the host model. For example, a model that uses a one-dimensional array of blocks for better cache-reuse may require cdata to be a one-dimensional array of the same size. Another example of a multi-dimensional array of cdata is in the SCM, which uses a one-dimensional cdata array for N independent columns.

Due to a restriction in the Fortran language, there are no standard pointers that are generic pointers, such as the C language allows. The CCPP system therefore has an underlying set of pointers in the C language that are used to point to the original data within the host application cap. The user does not see this C data structure, but deals only with the public face of the Fortran cdata DDT. The type ccpp_t is defined in ccpp/framework/src/ccpp_types.meta and declared in ccpp/framework/src/ccpp_types.F90.

6.4.2. Initializing and Finalizing the CCPP

At the beginning of each run, the cdata structure needs to be set up. Similarly, at the end of each run, it needs to be terminated. This is done with subroutines ccpp_init and ccpp_finalize. These subroutines should not be confused with ccpp_physics_init and ccpp_physics_finalize, which were described in Chapter 5.

Note that optional arguments are denoted with square brackets.

6.4.2.1. Suite Initialization Subroutine

The suite initialization subroutine, ccpp_init, takes three mandatory and two optional arguments. The mandatory arguments are the name of the suite (of type character), the name of the cdata variable that must be allocated at this point, and an integer used for the error status. Note that the suite initialization routine ccpp_init parses the SDF corresponding to the given suite name and initializes the state of the suite and its schemes. This process must be repeated for every element of a multi-dimensional cdata. For performance reasons, it is possible to avoid repeated reads of the SDF and to have a single state of the suite shared between the elements of cdata. To do so, specify an optional argument variable called cdata_target = X in the call to ccpp_init, where X refers to the instance of cdata that has already been initialized.

For a given suite name XYZ, the name of the suite definition file is inferred as suite_XYZ.xml, and the file is expected to be present in the current run directory. It is possible to specify the optional argument is_filename=.true. to ccpp_init, which will treat the suite name as an actual file name (with or without the path to it).

Typical calls to ccpp_init are below, where ccpp_suite is the name of the suite, and ccpp_sdf_filepath the actual SDF filename, with or without a path to it.

call ccpp_init(trim(ccpp_suite), cdata, ierr)
call ccpp_init(trim(ccpp_suite), cdata2, ierr, [cdata_target=cdata])
call ccpp_init(trim(ccpp_sdf_filepath), cdata, ierr, [is_filename=.true.])

6.4.2.2. Suite Finalization Subroutine

The suite finalization subroutine, ccpp_finalize, takes two arguments, the name of the cdata variable that must be de-allocated at this point, and an integer used for the error status. A typical call to ccpp_finalize is below:

call ccpp_finalize(cdata, ierr)

If a specific data instance was used in a call to ccpp_init, as in the above example in Section 6.4.2.1, then this data instance must be finalized last:

call ccpp_finalize(cdata2, ierr)
call ccpp_finalize(cdata, ierr)

6.4.3. Running the physics

The physics is invoked by calling subroutine ccpp_physics_run. This subroutine is part of the CCPP API and is auto-generated. This subroutine is capable of executing the physics with varying granularity, that is, a single group, or an entire suite can be run with a single subroutine call. Typical calls to ccpp_physics_run are below,where suite_name is mandatory and group_name is optional:

call ccpp_physics_run(cdata, suite_name, [group_name], ierr=ierr)

6.4.4. Initializing and Finalizing the Physics

Many (but not all) physical parameterizations need to be initialized, which includes functions such as reading lookup tables, reading input datasets, computing derived quantities, broadcasting information to all MPI ranks, etc. Initialization procedures are typically done for the entire domain, that is, they are not subdivided by blocks. Similarly, many (but not all) parameterizations need to be finalized, which includes functions such as deallocating variables, resetting flags from initialized to non-initiaIized, etc. Initialization and finalization functions are each performed once per run, before the first call to the physics and after the last call to the physics, respectively.

The initialization and finalization can be invoked for a single group, or for the entire suite. In both cases, subroutines ccpp_physics_init and ccpp_physics_finalize are used and the arguments passed to those subroutines determine the type of initialization.

These subroutines should not be confused with ccpp_init and ccpp_finalize, which were explained previously.

6.4.4.1. Subroutine ccpp_physics_init

This subroutine is part of the CCPP API and is auto-generated. It cannot contain thread-dependent information but can have block-dependent information. A typical call to ccpp_physics_init is:

call ccpp_physics_init(cdata, suite_name, [group_name], ierr=ierr)

6.4.4.2. Subroutine ccpp_physics_finalize

This subroutine is part of the CCPP API and is auto-generated. A typical call to ccpp_physics_finalize is:

call ccpp_physics_finalize(cdata, suite_name, [group_name], ierr=ierr)

6.5. Host Caps

The purpose of the host model cap is to abstract away the communication between the host model and the CCPP-Physics schemes. While CCPP calls can be placed directly inside the host model code (as is done for the relatively simple SCM), it is recommended to separate the cap in its own module for clarity and simplicity (as is done for the UFS Atmosphere). While the details of implementation will be specific to each host model, the host model cap is responsible for the following general functions:

	Allocating memory for variables needed by physics

	All variables needed to communicate between the host model and the physics, and all variables needed to communicate among physics schemes, need to be allocated by the host model. The latter, for example for interstitial variables used exclusively for communication between the physics schemes, are typically allocated in the cap.

	Allocating the cdata structure(s)

	Calling the suite initialization subroutine

	The suite must be initialized using ccpp_init.

	Populating the cdata structure(s)

	The autogenerated caps for the physics (groups and suite caps) are automatically given memory access to
the host model variables and they can be used directly, without the need for a data structure containing
pointers to the actual variables (which is what cdata is).

	Providing interfaces to call the CCPP

	The cap must provide functions or subroutines that can be called at the appropriate places in the host model time integration loop and that internally call ccpp_init, ccpp_physics_init, ccpp_physics_run, ccpp_physics_finalize and ccpp_finalize, and handle any errors returned See Listing 6.4.

module example_ccpp_host_cap

 use ccpp_api, only: ccpp_t, ccpp_init, ccpp_finalize
 use ccpp_static_api, only: ccpp_physics_init, ccpp_physics_run, &
 ccpp_physics_finalize

 implicit none
 ! CCPP data structure
 type(ccpp_t), save, target :: cdata
 public :: physics_init, physics_run, physics_finalize
contains

 subroutine physics_init(ccpp_suite_name)
 character(len=*), intent(in) :: ccpp_suite_name
 integer :: ierr
 ierr = 0

 ! Initialize the CCPP framework, parse SDF
 call ccpp_init(trim(ccpp_suite_name), cdata, ierr=ierr)
 if (ierr/=0) then
 write(*,'(a)') "An error occurred in ccpp_init"
 stop
 end if

 ! Initialize CCPP physics (run all _init routines)
 call ccpp_physics_init(cdata, suite_name=trim(ccpp_suite_name), &
 ierr=ierr)
 ! error handling as above

 end subroutine physics_init

 subroutine physics_run(ccpp_suite_name, group)
 ! Optional argument group can be used to run a group of schemes &
 ! defined in the SDF. Otherwise, run entire suite.
 character(len=*), intent(in) :: ccpp_suite_name
 character(len=*), optional, intent(in) :: group

 integer :: ierr
 ierr = 0

 if (present(group)) then
 call ccpp_physics_run(cdata, suite_name=trim(ccpp_suite_name), &
 group_name=group, ierr=ierr)
 else
 call ccpp_physics_run(cdata, suite_name=trim(ccpp_suite_name), &
 ierr=ierr)
 end if
 ! error handling as above

 end subroutine physics_run

 subroutine physics_finalize(ccpp_suite_name)
 character(len=*), intent(in) :: ccpp_suite_name
 integer :: ierr
 ierr = 0

 ! Finalize CCPP physics (run all _finalize routines)
 call ccpp_physics_finalize(cdata, suite_name=trim(ccpp_suite_name), &
 ierr=ierr)
 ! error handling as above
 call ccpp_finalize(cdata, ierr=ierr)
 ! error handling as above

 end subroutine physics_finalize

end module example_ccpp_host_cap

Listing 6.4: Fortran template for a CCPP host model cap from ccpp/framework/doc/DevelopersGuide/host_cap_template.F90.

The following sections describe two implementations of host model caps to serve as examples. For each of the functions listed above, a description for how it is implemented in each host model is included.

6.5.1. SCM Host Cap

The cap functions for the SCM are mainly implemented in:

gmtb-scm/scm/src/gmtb_scm.F90

With smaller parts in:

gmtb-scm/scm/src/gmtb_scm_type_defs.f90

gmtb-scm/scm/src/gmtb_scm_setup.f90

gmtb-scm/scm/src/gmtb_scm_time_integration.f90

The host model cap is responsible for:

	Allocating memory for variables needed by physics

All variables and constants required by the physics have metadata provided on the host-side, arg_table_physics_type and arg_table_gmtb_scm_physical_constants, which are implemented in gmtb_scm_type_defs.f90 and gmtb_scm_physical_constants.f90. To mimic the UFS Atmosphere and to hopefully reduce code maintenance, currently, the SCM uses GFS DDTs as sub-types within the physics DDT.

In gmtb_scm_type_defs.f90, the physics DDT has a create type-bound procedure (see subroutine physics_create and type physics_type), which allocates GFS sub-DDTs and other physics variables and initializes them with zeros. physics%create is called from gmtb_scm.F90 after the initial SCM state has been set up.

	Allocating the cdata structure

The SCM uses a one-dimensional cdata array for N independent columns, i.e. in gmtb_scm.F90:

allocate(cdata(scm_state%n_cols))

	Calling the suite initialization subroutine

Within scm_state%n_cols loop in gmtb_scm.F90 after initial SCM state setup and before first timestep, the suite initialization subroutine ccpp_init is called for each column with own instance of cdata, and takes three arguments, the name of the runtime SDF, the name of the cdata variable that must be allocated at this point, and ierr.

	Populating the cdata structure

Within the same scm_state%n_cols loop, but after the ccpp_init call, the cdata structure is filled in with real initialized values:

	physics%Init_parm (GFS DDT for setting up suite) are filled in from scm_state%

	call GFS_suite_setup(): similar to GFS_initialize() in the UFS Atmosphere, is called and includes:

	%init/%create calls for GFS DDTs

	initialization for other variables in physics DDT

	init calls for legacy non-ccpp schemes

	call physics%associate(): to associate pointers in physics DDT with targets in scm_state, which contains variables that are modified by the SCM “dycore” (i.e. forcing).

This include file is auto-generated from ccpp/scripts/ccpp_prebuild.py, which parses tables in gmtb_scm_type_defs.f90.

	Providing interfaces to call the CCPP

	Calling ccpp_physics_init()

Within the same scm_state%n_cols loop but after cdata is filled, the physics initialization routines (*_init()) associated with the physics suite, group, and/or schemes are called at each column.

	Calling ccpp_physics_run()

At the first timestep, if the forward scheme is selected (i.e. scm_state%time_scheme == 1), call do_time_step() to apply forcing and ccpp_physics_run() calls at each column; if the leapfrog scheme is selected (i.e. scm_state%time_scheme == 2), call ccpp_physics_run() directly at each column.

At a later time integration, call do_time_step() to apply forcing and ccpp_physics_run() calls at each column. Since there is no need to execute anything between physics groups in the SCM, the ccpp_physics_run call is only given cdata and an error flag as arguments.

	Calling ccpp_physics_finalize() and ccpp_finalize()

ccpp_physics_finalize() and ccpp_finalize() are called after the time loop at each column.

6.5.2. UFS Atmosphere Host Cap

This section describes how the host cap is implemented for the UFS Atmosphere build.
For the build that uses CCPP:

#ifdef CCPP
#endif

	Allocating memory for variables needed by physics

	Allocating the cdata structures

	For the current implementation of the UFS Atmosphere, which uses a subset of fast physics processes tightly coupled to the dynamical core, three instances of cdata exist within the host model: cdata_tile to hold data for the fast physics, cdata_domain to hold data needed for all UFS Atmosphere blocks for the slow physics, and cdata_block, an array of cdata DDTs with dimensions of (number of blocks, number of threads) to contain data for individual block/thread combinations for the slow physics. All are defined as module-level variables in the CCPP_data module of CCPP_data.F90. The cdata_block array is allocated (since the number of blocks and threads is unknown at compile-time) as part of the ‘init’ step of the CCPP_step subroutine in CCPP_driver.F90. Note: Although the cdata containers are not used to hold the pointers to the physics variables, they are still used to hold other CCPP-related information.

	Calling the suite initialization subroutine

	Corresponding to the three instances of cdata described above, the ccpp_init subroutine is called within three different contexts, all originating from the atmos_model_init subroutine of atmos_model.F90:

	For cdata_tile (used for the fast physics), the ccpp_init call is made from the atmosphere_init subroutine of atmosphere.F90. Note: when fast physics is used, this is the first call to ccpp_init, so it reads in the SDF and initializes the suite in addition to setting up the fields for cdata_tile.

	For cdata_domain and cdata_block used in the rest of the physics, the ‘init’ step of the CCPP_step subroutine in CCPP_driver.F90 is called. Within that subroutine, ccpp_init is called once to set up cdata_domain and within a loop for every block/thread combination to set up the components of the cdata_block array. Note: as mentioned in the CCPP API Section 6.4, when fast physics is used, the SDF has already been read and the suite is already setup, so this step is skipped and the suite information is simply copied from what was already initialized (cdata_tile) using the cdata_target optional argument.

	Providing interfaces to call the CCPP

	Calling ccpp_physics_init

	ccpp_physics_init is autogenerated and contained within ccpp_static_api.F90. As mentioned in the CCPP API Section 6.4 , it can be called to initialize groups as defined in the SDFs or the suite as a whole, depending on whether a group name is passed in as an optional argument.

	Calling ccpp_physics_run

	ccpp_physics_run is called from ccpp_static_api.F90 and contains autogenerated caps for groups and the suite as a whole as defined in the SDFs.

	calling ccpp_physics_finalize and ccpp_finalize

	ccpp_physics_finalize is autogenerated and contained within ccpp_static_api.F90. As mentioned in the CCPP API Section 6.4, it can be called to finalize groups as defined in the current SDFs or the suite as a whole, depending on whether a group name is passed in as an optional argument.

7. CCPP Code Management

7.1. Organization of the Code

This chapter describes the organization of the code, provides instruction on the GitHub workflow and the code review process, and outlines the release procedure. It is assumed that the reader is familiar with using basic GitHub features. A GitHub account is necessary if a user would like to make and contribute code changes.

7.1.1. Authoritative Repositories

There are two authoritative repositories for the CCPP:

https://github.com/NCAR/ccpp-framework

https://github.com/NCAR/ccpp-physics

Users have read-only access to these repositories and as such cannot accidentally destroy any important (shared) branches of these authoritative repositories. Both CCPP repositories are public (no GitHub account required) and may be used directly to read or create forks. Write permission is generally restricted, however.

The following branches are recommended for CCPP developers:

	Repository

	Branch name

	https://github.com/NCAR/ccpp-physics

	master

	https://github.com/NCAR/ccpp-framework

	master

7.1.2. Directory Structure of ccpp/framework

The following is the directory structure for the ccpp/framework (condensed version):

├── cmake # cmake files for building
├── doc # Documentation for design/implementation and developers guide
│ ├── DevelopersGuide
│ │ └── images
│ └── img
├── schemes # Example ccpp_prebuild_config.py
│ ├── check
├── scripts # Scripts for ccpp_prebuild.py, metadata parser, etc.
│ ├── fortran_tools
│ └── parse_tools
├── src # CCPP framework source code
│ └── tests # SDFs and code for testing
├── test
│ └── nemsfv3gfs # NEMSfv3gfs regression test scripts
└── tests # Development for framework upgrades

7.1.3. Directory Structure of ccpp/physics

The following is the directory structure for the ccpp/physics (condensed version):

├── physics # CCPP physics source code and metadata files
│ ├── docs # Scientific documentation (doxygen)
│ │ ├── img # Figures for doxygen
│ │ └── pdftxt # Text files for documentation

7.2. GitHub Workflow (setting up development repositories)

The CCPP development practices make use of the GitHub forking workflow. For users not familiar with this concept, this website provides some background information and a tutorial.

7.2.1. Creating Forks

The GitHub forking workflow relies on forks (personal copies) of the shared repositories on GitHub. These forks need to be created only once, and only for directories that users will contribute changes to. The following steps describe how to create a fork for the example of the ccpp-physics submodule/repository:

Go to https://github.com/NCAR/ccpp-physics and make sure you are signed in as your GitHub user.

Select the “fork” button in the upper right corner.

	If you have already created a fork, this will take you to your fork.

	If you have not yet created a fork, this will create one for you.

Note that the repo name in the upper left (blue) will be either “NCAR” or “your GitHub name” which tells you which fork you are looking at.

Note that personal forks are not required until a user wishes to make code contributions. The procedure for how to check out the code laid out below can be followed without having created any forks beforehand.

7.2.2. Checking out the Code

Instructions are provided here for the ccpp-physics repository. Similar steps are required for the ccpp-frameworkx repository. The process for checking out the CCPP is described in the following, assuming access via https rather than ssh. We strongly recommend setting up passwordless access to GitHub (see https://help.github.com/categories/authenticating-to-github).

Start with checking out the main repository from the NCAR GitHub

git clone https://github.com/NCAR/ccpp-physics
cd ccpp-physics
git remote rename origin upstream

Checking out remote branches means that your local branches are in a detached state, since you cannot commit directly to a remote branch. As long as you are not making any code modifications, this is not a problem. If during your development work changes are made to the corresponding upstream branch, you can simply navigate to this repository and check out the updated version:

git remote update
git checkout upstream/master
cd ..

However, if you are making code changes, you must create a local branch.

git checkout -b my_local_development_branch

Once you are ready to contribute the code to the upstream repository, you need to create a PR (see next section). In order to do so, you first need to create your own fork of this repository (see previous section) and configure your fork as an additional remote destination, which we typically label as origin. For example:

git remote add origin https://github.com/YOUR_GITHUB_USER/ccpp-physics
git remote update

Then, push your local branch to your fork:

git push origin my_local_development_branch

For each repository/submodule, you can check the configured remote destinations and all existing branches (remote and local):

git remote -v show
git remote update
git branch -a

As opposed to branches without modifications described in step 3, changes to the upstream repository can be brought into the local branch by pulling them down. For example (where a local branch is checked out):

cd ccpp-physics
git remote update
git pull upstream dtc/develop

7.3. Committing Changes to your Fork

Once you have your fork set up to begin code modifications, you should check that the cloned repositories upstream and origin are set correctly:

git remote -v

This should point to your fork as origin and the repository you cloned as upstream:

origin https://github.com/YOUR_GITHUB_USER/ccpp-physics (fetch)
origin https://github.com/YOUR_GITHUB_USER/ccpp-physics (push)
upstream https://github.com/NCAR/ccpp-physics (fetch)
upstream https://github.com/NCAR/ccpp-physics (push)

Also check what branch you are working on:

git branch

This command will show what branch you have checked out on your fork:

* features/my_local_development_branch
 dtc/develop
 master

After making modifications and testing, you can commit the changes to your fork. First check what files have been modified:

git status

This git command will provide some guidance on what files need to be added and what files are “untracked”. To add new files or stage modified files to be committed:

git add filename1 filename2

At this point it is helpful to have a description of your changes to these files documented somewhere, since when you commit the changes, you will be prompted for this information. To commit these changes to your local repository and push them to the development branch on your fork:

git commit
git push origin features/my_local_development_branch

When this is done, you can check the status again:

git status

This should show that your working copy is up to date with what is in the repository:

On branch features/my_local_development_branch
Your branch is up to date with 'origin/features/my_local_development_branch'.
nothing to commit, working tree clean

At this point you can continue development or create a PR as discussed in the next section.

7.4. Contributing Code, Code Review Process

Once your development is mature, and the testing has been completed (see next section), you are ready to create a PR using GitHub to propose your changes for review.

7.4.1. Creating a PR

Go to the github.com web interface, and navigate to your repository fork and branch. In most cases, this will be in the ccpp-physics repository, hence the following example:

Navigate to: https://github.com/<yourusername>/ccpp-physics

Use the drop-down menu on the left-side to select a branch to view your development branch

Use the button just right of the branch menu, to start a “New Pull Request”

Fill in a short title (one line)

Fill in a detailed description, including reporting on any testing you did

Click on “Create pull request”

If your development also requires changes in other repositories, you must open PRs in those repositories as well. In the PR message for each repository, please note the associate PRs submitted to other repositories.

Several people (aka CODEOWNERS) are automatically added to the list of reviewers on the right hand side. If others should be reviewing the code, click on the “reviewers” item on the right hand side and enter their GitHub usernames

Once the PR has been approved, the change is merged to master by one of the code owners. If there are pending conflicts, this means that the code is not up to date with the trunk. To resolve those, pull the target branch from upstream as described above, solve the conflicts and push the changes to the branch on your fork (this also updates the PR).

Note. GitHub offers a draft pull request feature that allows users to push their code to GitHub and create a draft PR. Draft PRs cannot be merged and do not automatically initiate notifications to the CODEOWNERS, but allow users to prepare the PR and flag it as “ready for review” once they feel comfortable with it.

8. Technical Aspects of the CCPP Prebuild

8.1. Prebuild Script Function

The CCPP prebuild script ccpp/framework/scripts/ccpp_prebuild.py is the central piece of code that
connects the host model with the CCPP-Physics schemes (see 3.1). This script must be run
before compiling the CCPP-Physics library and the host model cap. This may be done manually or as part
of a host model build-time script. In the case of the SCM, ccpp_prebuild.py must be run manually, as it not
incorporated in that model’s build system. In the case of ufs-weather-model, ccpp_prebuild.py can be run manually
or automatically as a step in the build system.

The CCPP prebuild script automates several tasks based on the information collected from the metadata
on the host model side and from the individual physics schemes (.meta files; see Figure 8.1):

	Compiles a list of variables required to run all schemes in the CCPP-Physics pool.

	Compiles a list of variables provided by the host model.

	Matches these variables by their standard_name, checks for missing variables and mismatches of their
attributes (e.g., units, rank, type, kind) and processes information on optional variables. Performs
automatic unit conversions if a mismatch of units is detected between a scheme and the host model
(see Section 5.2 for details).

	Filters out unused variables for a given suite.

	Autogenerates software caps as appropriate:

	The script generates caps for the suite as a whole and physics groups as defined in the input
SDFs; in addition, the CCPP API for the build is generated.

	Populates makefiles with caps. Statements to compile the CCPP API are included as well.

[image: map to buried treasure]

Fig. 8.1 Schematic of tasks automated by the ccpp_prebuild.py script and associated inputs and outputs. The majority of the input is controlled through the host-model dependent ccpp_prebuild_config.py , whose user-editable variables are included as all-caps within the ccpp_prebuild_config.py bubble. Outputs are color-coded according to their utility: purple outputs are informational only (useful for developers, but not necessary to run the code), yellow outputs are used within the host model, blue outputs are connected to the physics, and green outputs are used in the model build.

8.2. Script Configuration

To connect the CCPP with a host model XYZ, a Python-based configuration file for this model must be created in the host model’s repository. The easiest way is to copy an existing configuration file for the TEST model in sub-directory schemes/check of the ccpp-Framework repository. The configuration in ccpp_prebuild_config.py depends largely on (a) the directory structure of the host model itself, (b) where the ccpp-framework and the ccpp-physics directories are located relative to the directory structure of the host model, and (c) from which directory the ccpp_prebuild.py script is executed before/during the build process (this is referred to as basedir in ccpp_prebuild_config_XYZ.py).

Listing 8.1 contains an example for the CCPP-SCM prebuild config. Here, it is assumed that both ccpp-framework and ccpp-physics are located in directories ccpp/framework and ccpp/physics of the top-level directory of the host model, and that ccpp_prebuild.py is executed from the same top-level directory.

Host model identifier
HOST_MODEL_IDENTIFIER = "TEST"
Add all files with metadata tables on the host model side,
relative to basedir = top-level directory of host model
VARIABLE_DEFINITION_FILES = [
 ’scm/src/gmtb_scm_type_defs.f90’,
 ’scm/src/gmtb_scm_physical_constants.f90’
]
Add all physics scheme dependencies relative to basedir - note that the CCPP
rules stipulate that dependencies are not shared between the schemes!
SCHEME_FILES_DEPENDENCIES = [] # can be empty
Add all physics scheme files relative to basedir
SCHEME_FILES = {
Relative path : [list of sets in which scheme may be called]
’ccpp/physics/physics/GFS_DCNV_generic.f90’ : [’physics’],
’ccpp/physics/physics/sfc_sice.f’ : [’physics’],
}
Auto-generated makefile/cmakefile snippets that contains all schemes
SCHEMES_MAKEFILE = ’ccpp/physics/CCPP_SCHEMES.mk’
SCHEMES_CMAKEFILE = ’ccpp/physics/CCPP_SCHEMES.cmake’
CCPP host cap in which to insert the ccpp_field_add statements;
determines the directory to place ccpp_{modules,fields}.inc
TARGET_FILES = [’scm/src/gmtb_scm.f90’,]
Auto-generated makefile/cmakefile snippets that contains all caps
CAPS_MAKEFILE = ’ccpp/physics/CCPP_CAPS.mk’
CAPS_CMAKEFILE = ’ccpp/physics/CCPP_CAPS.cmake’
Directory where to put all auto-generated physics caps
CAPS_DIR = ’ccpp/physics/physics’
Directory where the suite definition files are stored
SUITES_DIR = 'ccpp/suites'

Optional arguments - only required for schemes that use optional arguments.
ccpp_prebuild.py will throw an exception if it encounters a scheme subroutine with optional arguments if no entry is made here. Possible values are:
OPTIONAL_ARGUMENTS = {
#’subroutine_name_1’ : ’all’, #’subroutine_name_2’ : ’none’, #’subroutine_name_3’ : [’var1’, ’var2’],}
Names of Fortran include files in the host model cap (do not change);
both files will be written to the directory of each target file
Directory where to write static API to
STATIC_API_DIR = 'scm/src'

HTML document containing the model-defined CCPP variables
HTML_VARTABLE_FILE = ’ccpp/physics/CCPP_VARIABLES.html’
LaTeX document containing the provided vs requested CCPP variables
LATEX_VARTABLE_FILE = ’ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES.tex’
######## Template code to generate include files ########
Name of the CCPP data structure in the host model cap;
in the case of SCM, this is a vector with loop index i
CCPP_DATA_STRUCTURE = ’cdata(i)’

EOF

Listing 8.1: CCPP prebuild config for SCM (shortened)

Although most of the variables in the ccpp_prebuild_config.py script are described by in-line comments in the code listing above and their use is described in Figure 8.1, some clarifying comments are in order regarding the SCHEME_FILES variable. This is a list of CCPP-compliant physics scheme entry/exit point source files. For each item in this list, a list of physics “sets” in which the scheme may be executed is included. A physics set refers to a collection of physics schemes that are able to be called together and executed in one software domain of a host model that do not share variables with schemes from another physics set. This feature was included to cater to the needs of the UFS Weather Model, which provides a clear-cut example of this concept. In this model, part of the microphysics scheme needed to be coupled more tightly with the dynamics, so this part of the microphysics code was put into a physics set labeled “fast_physics” which is executed within the dycore code. The variables in this physics set are distinct (in memory, due to a lack of a model variable registry) from variables used in the rest of the physics, which are part of the “slow_physics” set. In the future, it may be necessary to have additional sets, e.g. for chemistry or separate surface model components that do not share data/memory with other model components. For simpler models such as the CCPP SCM, only one physics set (labeled “physics”) is necessary. The concept of physics sets is different from physics “groups”, which are capable of sharing variables among their members and between groups but are used to organize schemes into sequential, callable units.

8.3. Running ccpp_prebuild.py

Once the configuration in ccpp_prebuild_config.py is complete, the ccpp_prebuild.py script can be run from the top level directory. For the SCM, this script must be run to reconcile data provided by the SCM with data required by the physics schemes before compilation and to generate physics caps and makefile segments. For the UFS Atmosphere host model, the ccpp_prebuild.py script is called automatically by the ufs-weather-model build system when the CCPP build is requested (by running the CCPP regression tests or by passing the option CCPP=Y and others to the compile.sh script; see the compile commands defined in the CCPP regression test configurations for further details).

For developers adding a CCPP-compliant physics scheme, running ccpp_prebuild.py periodically is recommended to check that the metadata provided with the physics schemes matches what the host model provided. For the UFS Atmosphere, running ccpp_prebuild.py manually is identical to running it for the SCM (since the relative paths to their respective ccpp_prebuild_config.py files are identical), except it may be necessary to add the --suites command-line argument.

As alluded to above, the ccpp_prebuild.py script has five command line options, with the path to a host-model specific configuration file (--config) being the only necessary input option:

-h, --help show this help message and exit

--config PATH_TO_CONFIG/config_file path to CCPP prebuild configuration file

--clean remove files created by this script, then exit

--debug enable debugging output

--suites SUITES SDF(s) to use (comma-separated, without path)

Note

If the –suites option is omitted, all suites will be compiled into the executable.

An example invocation of running the script (called from the host model’s top level directory) would be:

./ccpp/framework/scripts/ccpp_prebuild.py \
 --config=./ccpp/config/ccpp_prebuild_config.py \
 --suites=FV3_GFS_v15p2 \
 --debug

which uses a configuration script located at the specified path. The debug option can be used for more verbose output from the script.

The SDF(s) must be included and specified using the --suites command-line argument. Such files are included with the SCM and ufs-weather-model repositories, and must be included with the code of any host model to use the CCPP. An example of a build using two SDFs is:

./ccpp/framework/scripts/ccpp_prebuild.py \
 --config=./ccpp/config/ccpp_prebuild_config.py \
 --suites=FV3_GFS_v15p2,FV3_GFS_v16beta

If the CCPP prebuild step is successful, the last output line will be:

INFO: CCPP prebuild step completed successfully.

To remove all files created by ccpp_prebuild.py, for example as part of a host model’s make clean functionality, execute the same command as before, but with --clean appended:

./ccpp/framework/scripts/ccpp_prebuild.py --config=./ccpp/config/ccpp_prebuild_config.py \
--suites=FV3_GFS_v15p2,FV3_GFS_v16beta --clean

8.4. Troubleshooting

If invoking the ccpp_prebuild.py script fails, some message other than the success message will be written to the terminal output. Specifically, the terminal output will include informational logging messages generated from the script and any error messages written to the Python logging utility. Some common errors (minus the typical logging output and traceback output) and solutions are described below, with non-bold font used to denote aspects of the message that will differ depending on the problem encountered. This is not an exhaustive list of possible errors, however. For example, in this version of the code, there is no cross-checking that the metadata information provided corresponds to the actual Fortran code, so even though ccpp_prebuild.py may complete successfully, there may be related compilation errors later in the build process. For further help with an undescribed error, please contact the CCPP Forum https://dtcenter.org/forum/ccpp-user-support or the UFS Weather Model Forum https://forums.ufscommunity.org/.

	
	ERROR: Configuration file erroneous/path/to/config/file not found
	
	Check that the path entered for the --config command line option points to a readable configuration file.

	
	KeyError: ‘erroneous_scheme_name’ when using the --suites option
	
	This error indicates that a scheme within the supplied SDFs does not match any scheme names found in the SCHEME_FILES variable of the supplied configuration file that lists scheme source files. Double check that the scheme’s source file is included in the SCHEME_FILES list and that the scheme name that causes the error is spelled correctly in the supplied SDFs and matches what is in the source file (minus any *_init, *_run, *_finalize suffixes).

	CRITICAL: Suite definition file erroneous/path/to/SDF.xml not found.

	Exception: Parsing suite definition file erroneous/path/to/SDF.xml failed.
	
	Check that the path SUITES_DIR in the CCPP prebuild config and the names entered for the --suites command line option are correct.

	ERROR: Scheme file path/to/offending/scheme/source/file belongs to multiple physics sets: set1, set2

	Exception: Call to check_unique_pset_per_scheme failed.
	
	This error indicates that a scheme defined in the SCHEME_FILES variable of the supplied configuration file belongs to more than one set. Currently, a scheme can only belong to one physics set.

	ERROR: Group group1 contains schemes that belong to multiple physics sets: set1,set2

	Exception: Call to check_unique_pset_per_group failed.
	
	This error indicates that one of the groups defined in the supplied SDF(s) contains schemes that belong to more than one physics set. Make sure that the group is defined correctly in the SDF(s) and that the schemes within the group belong to the same physics set (only one set per scheme is allowed at this time).

	INFO: Parsing metadata tables for variables provided by host model …

	IOError: [Errno 2] No such file or directory: ‘erroneous_file.f90’
	
	Check that the paths specified in the VARIABLE_DEFINITION_FILES of the supplied configuration file are valid and contain CCPP-compliant host model snippets for insertion of metadata information. (see example)

	
	Exception: Error parsing variable entry “erroneous variable metadata table entry data” in argument table variable_metadata_table_name
	
	Check that the formatting of the metadata entry described in the error message is OK.

	
	Exception: New entry for variable var_name in argument table variable_metadata_table_name is incompatible with existing entry:
	
Existing: Contents of <mkcap.Var object at 0x10299a290> (* = mandatory for compatibility):

standard_name = var_name *

long_name =

units = various *

local_name =

type = real *

rank = (:,:,:) *

kind = kind_phys *

intent = none

optional = F

target = None

container = MODULE_X TYPE_Y

vs. new: Contents of <mkcap.Var object at 0x10299a310> (* = mandatory for compatibility):

standard_name = var_name *

long_name =

units = frac *

local_name =

type = real *

rank = (:,:) *

kind = kind_phys *

intent = none

optional = F

target = None

container = MODULE_X TYPE_Y

	This error is associated with a variable that is defined more than once (with the same standard name) on the host model side. Information on the offending variables is provided so that one can provide different standard names to the different variables.

	
	Exception: Scheme name differs from module name: module_name= “X” vs. scheme_name= “Y”
	
	Make sure that each scheme in the errored module begins with the module name and ends in either *_init, *_run, or *_finalize.

	
	Exception: Encountered closing statement "end" without descriptor (subroutine, module, ...): line X= "end " in file erroneous_file.F90
	
	This script expects that subroutines and modules end with descriptor and name, e.g. ‘end subroutine subroutine_name’.

	
	Exception: New entry for variable var_name in argument table of subroutine scheme_subroutine_name is incompatible with existing entry:
	
existing: Contents of <mkcap.Var object at 0x10299a290> (* = mandatory for compatibility):

standard_name = var_name *

long_name =

units = various *

local_name =

type = real *

rank = (:,:,:) *

kind = kind_phys *

intent = none

optional = F

target = None

container = MODULE_X TYPE_Y

vs. new: Contents of <mkcap.Var object at 0x10299a310> (* = mandatory for compatibility):

standard_name = var_name *

long_name =

units = frac *

local_name =

type = real *

rank = (:,:) *

kind = kind_phys *

intent = none

optional = F

target = None

container = MODULE_X TYPE_Y

	This error is associated with physics scheme variable metadata entries that have the same standard name with different mandatory properties (either units, type, rank, or kind currently – those attributes denoted with a *). This error is distinguished from the error described in 8 above, because the error message mentions “in argument table of subroutine” instead of just “in argument table”.

	
	ERROR: Check that all subroutines in module module_name have the same root name:
	i.e. scheme_A_init, scheme_A_run, scheme_A_finalize
Here is a list of the subroutine names for scheme scheme_name: scheme_name_finalize, scheme_name_run
* All schemes must have *_init, *_run, *_finalize subroutines contained within its entry/exit point module.

	
	ERROR: Variable X requested by MODULE_Y SCHEME_Z SUBROUTINE_A not provided by the model
	Exception: Call to compare_metadata failed.

	A variable requested by one or more physics schemes is not being provided by the host model. If the variable exists in the host model but is not being made available for the CCPP, an entry must be added to one of the host model variable metadata sections.

	
	ERROR: error, variable X requested by MODULE_Y SCHEME_Z SUBROUTINE_A cannot be identified unambiguously. Multiple definitions in MODULE_Y TYPE_B
	
	A variable is defined in the host model variable metadata more than once (with the same standard name). Remove the offending entry or provide a different standard name for one of the duplicates.

	
	ERROR: incompatible entries in metadata for variable var_name:
	
provided: Contents of <mkcap.Var object at 0x104883210> (* = mandatory for compatibility):

standard_name = var_name *

long_name =

units = K *

local_name =

type = real *

rank = *

kind = kind_phys *

intent = none

optional = F

target = None

container =

requested: Contents of <mkcap.Var object at 0x10488ca90> (* = mandatory for compatibility):

standard_name = var_name *

long_name =

units = none *

local_name =

type = real *

rank = *

kind = kind_phys *

intent = in

optional = F

target = None

container =

	
	Exception: Call to compare_metadata failed.
	
	This error indicates a mismatch between the attributes of a variable provided by the host model and what is requested by the physics. Specifically, the units, type, rank, or kind don’t match for a given variable standard name. Double-check that the attributes for the provided and requested mismatched variable are accurate. If after checking the attributes are indeed mismatched, reconcile as appropriate (by adopting the correct variable attributes either on the host or physics side).

Note: One error that the ccpp_prebuild.py script will not catch is if a physics scheme lists a variable in its actual (Fortran) argument list without a corresponding entry in the subroutine’s variable metadata. This will lead to a compilation error when the autogenerated scheme cap is compiled:

Error: Missing actual argument for argument 'X' at (1)

9. Tips for Adding a New Scheme

This chapter contains a brief description on how to add a new scheme to the CCPP-Physics pool.

	Identify the variables required for the new scheme and check if they are already available for use in the CCPP by checking the metadata information in GFS_typedefs.meta or by perusing file ccpp-framework/doc/DevelopersGuide/CCPP_VARIABLES_{FV3,SCM}.pdf generated by ccpp_prebuild.py.

	If the variables are already available, they can be invoked in the scheme’s metadata file and one can skip the rest of this subsection. If the variable required is not available, consider if it can be calculated from the existing variables in the CCPP. If so, an interstitial scheme (such as scheme_pre; see more in Chapter 2) can be created to calculate the variable. However, the variable must be defined but not initialized in the host model as the memory for this variable must be allocated on the host model side. Instructions for how to add variables to the host model side is described in Chapter 6.

Note

The CCPP framework is capable of performing automatic unit conversions between variables provided by the host model and variables required by the new scheme. See Section 5.2 for details.

	If new namelist variables need to be added, the GFS_control_type DDT should be used. In this case, it is also important to modify the namelist file input.nml to include the new variable.

	It is important to note that not all data types are persistent in memory. Most variables in the interstitial data type are reset (to zero or other initial values) at the beginning of a physics group and do not persist from one set to another or from one group to another. The diagnostic data type is periodically reset because it is used to accumulate variables for given time intervals. However, there is a small subset of interstitial variables that are set at creation time and are not reset; these are typically dimensions used in other interstitial variables.

Note

If the value of a variable must be remembered from one call to the next, it should not be in the interstitial or diagnostic data types.

	If information from the previous timestep is needed, it is important to identify if the host model readily provides this information. For example, in the Model for Prediction Across Scales (MPAS), variables containing the values of several quantities in the preceding timesteps are available. When that is not the case, as in the UFS Atmosphere, interstitial schemes are needed to compute these variables. As an example, the reader is referred to the GF convective scheme, which makes use of interstitials to obtain the previous timestep information.

	Examine scheme-specific and suite interstitials to see what needs to be replaced/changed; then check existing scheme interstitial and determine what needs to replicated. Identify if your new scheme requires additional interstitial code that must be run before or after the scheme and that cannot be part of the scheme itself, for example because of dependencies on other schemes and/or the order the scheme is run in the SDF.

	Follow the guidelines outlined in Chapter 2 to make your scheme CCPP-compliant. Make sure to use an uppercase suffix .F90 to enable C preprocessing.

	Locate the CCPP prebuild configuration files for the target host model, for example:

	ufs-weather-model/FV3/ccpp/config/ccpp_prebuild_config.py for the UFS Atmosphere

	gmtb-scm/ccpp/config/ccpp_prebuild_config.py for the SCM

	Add the new scheme to the Python dictionary in ccpp_prebuild_config.py using the same path
as the existing schemes:

SCHEME_FILES = [...
’../some_relative_path/existing_scheme.F90’,
’../some_relative_path/new_scheme.F90’,
...]

	If the new scheme uses optional arguments, add information on which ones to use further down in the configuration file. See existing entries and documentation in the configuration file for the possible options:

OPTIONAL_ARGUMENTS = {
 ’SCHEME_NAME’ : {
 ’SCHEME_NAME_run’ : [
 # list of all optional arguments in use for this
 # model, by standard_name],
 # instead of list [...], can also say ’all’ or ’none’
 },
 }

	Place new scheme in the same location as existing schemes in the CCPP directory structure, e.g., ../some_relative_path/new_scheme.F90.

	Edit the SDF and add the new scheme at the place it should be run. SDFs are located in

	ufs-weather-model/FV3/ccpp/suites for the UFS Atmosphere

	gmtb-scm/ccpp/suites for the SCM

	Before running, check for consistency between the namelist and the SDF. There is no default consistency check between the SDF and the namelist unless the developer adds one. Errors may result in segmentation faults in running something you did not intend to run if the arrays are not allocated.

	Test and debug the new scheme:

	Typical problems include segment faults related to variables and array allocation.

	Make sure SDF and namelist are compatible. Inconsistencies may result in segmentation faults because arrays are not allocated or in unintended scheme(s) being executed.

	A scheme called GFS_debug (GFS_debug.F90) may be added to the SDF where needed to print state variables and interstitial variables. If needed, edit the scheme beforehand to add new variables that need to be printed.

	Check prebuild script for success/failure and associated messages.

	Compile code in DEBUG mode, run through debugger if necessary (gdb, Allinea DDT, totalview, …).

	Use memory check utilities such as valgrind.

	Double-check the metadata file associated with your scheme to make sure that all information, including standard names and units, correspond to the correct local variables.

	Done. Note that no further modifications of the build system are required, since the CCPP-Framework will autogenerate the necessary makefiles that allow the host model to compile the scheme.

10. Parameterization-specific Output

10.1. Overview

When used with UFS and the SCM, the CCPP offers the capability of outputting tendencies of temperature,
zonal wind, meridional wind, ozone, and specific humidity produced by the parameterizations of selected
suites. This capability is useful for understanding the behavior of the individual parameterizations in
terms of magnitude and spatial distribution of tendencies, which can help model developers debug, refine,
and tune their schemes.

The CCPP also enables outputting two-dimensional (2D) or three-dimensional (3D) arbitrary diagnostics
from the parameterizations. This capability is targeted to model developers who may benefit from analyzing
intermediate quantities computed in one or more parameterizations. One example of desirable diagnostic is
tendencies from sub-processes within a parameterization, such as the tendencies from condensation,
evaporation, sublimation, etc. from a microphysics parameterization. The output is done using CCPP-provided
2D- and 3D arrays, and the developer can fill positions 1, 2, .., N of the array. Important aspects of the
implementation are that memory is only allocated for the necessary positions of the array and that all
diagnostics are output on physics model levels. An extension to enable output on radiation levels may be
considered in future implementations.

These capabilities have been tested and are expected to work with the following suites:

	UFS: GFSv15p2 suite

	SCM: GFSv15p2, GFSv16beta, and GSD_v1 suites

10.2. Tendencies

This section describes the tendencies available, how to set the model to prepare them and how to output
them. It also contains a list of frequently-asked questions in Section 10.2.4.

10.2.1. Available Tendencies

At this time, it is possible to output 40 different tendencies. Not all schemes produce all tendencies.
For example, the orographic and convective gravity wave drag (GWD) schemes produce tendencies of
temperature and momentum, but not of specific humidity and ozone. Similarly, only the planetary boundary
layer (PBL), deep and shallow convection, and microphysics schemes produce specific humidity tendencies.
A complete list of the tendencies that can be output is shown in Table 10.1.

In addition to the tendencies from specific schemes, the output includes tendencies from all physics
schemes (“All” in Table 10.1) and from all non-physics processes (“None” in
Table 10.1). Examples of non-physical processes are dynamical core processes
such as advection and nudging toward climatological fields.

In the supported suites, there are two types of schemes that produce ozone tendencies: PBL and ozone
photochemistry. The total tendency produced by the ozone photochemistry scheme (NRL 2015 scheme) is
subdivided by subprocesses: production and loss (combined as a single subprocess), quantity of ozone
present in the column above a grid cell, influences from temperature, and influences from mixing ratio.
For more information about the NRL 2015 ozone photochemistry scheme, consult the CCPP Scientific
Documentation here [https://dtcenter.ucar.edu/GMTB/v5.0.0/sci_doc/GFS_OZPHYS.html].

Table 10.1 Complete list of available tendencies

	Tendency

	Associated
Namelist
Variables

	From CCPP scheme

	Array

	Units

	Temperature

	ldiag3d

	Long-wave radiation

	dt3dt_lw

	K s-1

	
	
	Short-wave radiation

	dt3dt_sw

	K s-1

	
	
	PBL

	dt3dt_pbl

	K s-1

	
	
	Deep convection

	dt3dt_deepcnv

	K s-1

	
	
	Shallow convection

	dt3dt_shalcnv

	K s-1

	
	
	Microphysics

	dt3dt_mp

	K s-1

	
	
	Orographic GWD

	dt3dt_orogwd

	K s-1

	
	
	Rayleigh damping

	dt3dt_rdamp

	K s-1

	
	
	Convective GWD

	dt3dt_cnvgwd

	K s-1

	
	
	All

	dt3dt_phys

	K s-1

	
	
	None

	dt3dt_nophys

	K s-1

	Meridional Wind

	ldiag3d

	PBL

	dv3dt_pbl

	m s-2

	
	
	Deep convection

	dv3dt_deepcnv

	m s-2

	
	
	Shallow convection

	dv3dt_shalcnv

	m s-2

	
	
	Microphysics

	dv3dt_mp

	m s-2

	
	
	Orographic GW

	dv3dt_orogwd

	m s-2

	
	
	Rayleigh damping

	dv3dt_rdamp

	m s-2

	
	
	Convective GW

	dv3dt_cnvgmw

	m s-2

	
	
	All

	dv3dt_phys

	m s-2

	
	
	None

	dv3dt_nophys

	n s-2

	Specific humidity

	ldiag3d, qdiag3d

	PBL

	dq3dt_pbl

	kg kg-1 s-1

	
	
	Deep convection

	dq3dt_deepcnv

	kg kg-1 s-1

	
	
	Shallow convection

	dq3dt_shalcnv

	kg kg-1 s-1

	
	
	Microphysics

	dq3dt_mp

	kg kg-1 s-1

	
	
	All

	dq3dt_phys

	kg kg-1 s-1

	
	
	None

	dq3dt_nophys

	kg kg-1 s-1

	Ozone

	ldiag3d, qdiag3d

	PBL

	dq3dt_o3pbl

	kg kg-1 s-1

	
	
	Ozone: Production and loss

	dq3dt_o3prodloss

	kg kg-1 s-1

	
	
	Ozone: Mixing

	dq3dt_o3mix

	kg kg-1 s-1

	
	
	Ozone: Temperature

	dq3dt_o3temp

	kg kg-1 s-1

	
	
	Ozone: Column

	dq3dt_o3column

	kg kg-1 s-1

	
	
	All

	dq3dt_o3phys

	kg kg-1 s-1

	
	
	None

	dq3dt_o3nophys

	kg kg-1 s-1

10.2.2. Activating Tendencies

For performance reasons, the preparation of tendencies for output is off by default in the UFS and
can be turned on via a set of namelist options. Since the SCM is not operational and has a relatively
tiny memory footprint, these tendencies are turned on by default in the SCM.

There are two namelist variables associated with this capability: ldiag3d and qdiag3d. To prepare the
tendencies of temperature and momentum, it is necessary to set ldiag3d to true in the &gfs_physics_nml
portion of the namelist file input.nml. To prepare the tendencies of temperature, momentum, specific
humidity and ozone, it is necessary to set both ldiag3d and qdiag3d to true in the &gfs_physics_nml
portion of the namelist file input.nml. The capability to prepare only the tendencies of specific
humidity and ozone is not supported. Recall that these options must be changed from their defaults for
the UFS to activate this functionality, but they are already set by default for the SCM.

Note that there is a third namelist variable, lssav, associated with the output of
parameterization-specific information. The value of lssav is overwritten to true in the code, so
the value used in the namelist is irrelevant.

While the tendencies output by the SCM are instantaneous, the tendencies output by the UFS are averaged
over the number of hours specified by the user in variable fhzero in the &gfs_physics_nml portion of the
namelist file input.nml. Variable fhzero must be an integer (it cannot be zero).

10.2.3. Outputting Tendencies

10.2.3.1. UFS

When ldiag3d and qdiag3d are set to true, the tendencies described in
Table 10.1 are prepared for output. Finer control over which
variables will actually be output is available through the diag table. The user must edit
the diag table and enter new lines at the end with the variables desired in the output. For
example, adding the line below results in the output of the temperature tendencies due to
long wave radiation:

"gfs_phys", "dt3dt_lw", "dt3dt_lw", "fv3_history", "all", .false., "none", 2

Note that some host models, such as the UFS, have a limit of how many fields can be output in a run.
When outputting all tendencies, this limit may have to be increased. In the UFS, this limit is determined
by variable max_output_fields in namelist section &diag_manager_nml in file input.nml.

Further documentation of the diag_table file can be found in the UFS Weather Model User’s Guide
here [https://ufs-weather-model.readthedocs.io/en/latest/InputsOutputs.html#diag-table-file].

After running, the requested arrays will be present in the output files.

10.2.3.2. SCM

The default behavior of the SCM is to output instantaneous values of all variables in
Table 10.1. Tendencies are computed in file gmtb_scm_output.F90 in
the subroutines output_init and output_append. If the values of ldiag3d or qdiag3d are set
to false, the variables are still written to output but are given missing values.

10.2.4. FAQ

10.2.4.1. What is the meaning of error message max_output_fields was exceeded?

If the limit to the number of output fields is exceeded, the job may fail with the following message:

FATAL from PE 24: diag_util_mod::init_output_field: max_output_fields = 300 exceeded. Increase via diag_manager_nml

In this case, increase max_output_fields in input.nml:

&diag_manager_nml
 prepend_date = .F.
 max_output_fields = 600

10.2.5. Why did I run out of memory when outputting tendencies?

Trying to output all tendencies may cause memory problems. Choose your output variables carefully!

10.2.6. Why did I get a runtime logic error when outputting tendencies?

Setting ldiag3d=F and qdiag3d=T will result in an error message:

Logic error in GFS_typedefs.F90: qdiag3d requires ldiag3d

If you want to output specific humidity and/or ozone tendencies, you must set both ldiag3d and qdiag3d to T.

10.3. Output of Auxiliary Arrays from CCPP

The output of diagnostics from one or more parameterizations involves changes to the
namelist and code changes in the parameterization(s) (to load the desirable information
onto the CCPP-provided arrays and to add them to the subroutine arguments) and in the
parameterization metadata descriptor file(s) (to provide metadata on the new subroutine
arguments). In the UFS, the namelist is used to control the temporal averaging period.
These code changes are intended to be used by scientists during the development process
and are not intended to be incorporated into the master code. Therefore, developers
must remove any code related to these additional diagnostics before submitting a pull
request to the ccpp-physics repository.

The auxiliary diagnostics from CCPP are output in arrays:

	aux2d - auxiliary 2D array for outputting diagnostics

	aux3d - auxiliary 3D array for outputting diagnostics

and dimensioned by:

	naux2d - number of 2D auxiliary arrays to output for diagnostics

	naux3d - number of 3D auxiliary arrays to output diagnostics

At runtime, these arrays will be written to the output files. Note that auxiliary
arrays can be output from more than one parameterization in a given run.

The UFS and SCM already contain code to declare and initialize the arrays:

	dimensions are declared and initialized in GFS_typedefs.F90

	metadata for these arrays and dimensions are defined in GFS_typedefs.meta

	arrays are populated in GFS_diagnostics.F90 (UFS) or gmtb_scm_output.F90 (SCM)

The remainder of this section describes changes the developer needs to make in the
physics code and in the host model control files to enable the capability. An
example (Section 10.3.2) and FAQ (Section 10.3.2.1)
are also provided.

10.3.1. Enabling the capability

10.3.1.1. Physics-side changes

In order to output auxiliary arrays, developers need to change at least the following
two files within the physics (see also example in Section 10.3.2):

	
	A CCPP entrypoint scheme
	
	Add array(s) and its/their dimension(s) to the list of subroutine arguments

	Declare array(s) with appropriate intent and dimension(s). Note that array(s) do not
need to be allocated by the developer. This is done automatically in GFS_typedefs.F90.

	Populate array(s) with desirable diagnostic for output

	
	The file with metadata for modified scheme(s)
	
	Add entries for the array(s) and its/their dimension(s) and provide metadata

10.3.1.2. Host-side changes

10.3.1.2.1. UFS

For the UFS, developers have to change the following two files on the host side (also see
example provided in Section 10.3.2)

	
	Namelist file input.nml
	
	Specify how many 2D and 3D arrays will be output using variables naux2d and naux3d
in section &gfs_physics_nml, respectively. The maximum allowed number of arrays to
output is 20 2D and 20 3D arrays.

	Specify whether the output should be for instantaneous or time-averaged quantities using
variables aux2d_time_avg and aux_3d_time_avg. These arrays are dimensioned naux2d
and naux3d, respectively, and, if not specified in the namelist, take the default value F.

	Specify the period of averaging for the arrays using variable fhzero (in hours).

	
	File diag_table
	
	Enable output of the arrays at runtime.

	2D and 3D arrays are written to the output files.

10.3.1.2.2. SCM

Typically, in a 3D model, 2D arrays represent variables with two horizontal dimensions, e.g. x
and y, whereas 3D arrays represent variables with all three spatial dimensions, e.g. x, y, and z.
For the SCM, these arrays are implicitly 1D and 2D, respectively, where the “y” dimension is 1
and the “x” dimension represents the number of independent columns (typically also 1). For
continuity with the UFS Atmosphere, the naming convention 2D and 3D are retained, however.
With this understanding, the namelist files can be modified as in the UFS:

	
	Namelist file input.nml
	
	Specify how many 2D and 3D arrays will be output using variables naux2d and naux3d
in section &gfs_physics_nml, respectively. The maximum allowed number of arrays to
output is 20 2D and 20 3D arrays.

	Unlike the UFS, only instantaneous values are output. Time-averaging can be done through
post-processing the output. Therefore, the values of aux2d_time_avg and aux_3d_time_avg
should not be changed from their default false values. As such, the namelist variable fhzero
has no effect in the SCM.

10.3.2. Recompiling and Examples

The developer must recompile the code after making the source code changes to the CCPP scheme(s)
and associated metadata files. Changes in the namelist and diag table can be made after compilation.
At compile and runtime, the developer must pick suites that use the scheme from which output is desired.

An example for how to output auxiliary arrays is provided in the rest of this section. The lines that
start with “+” represent lines that were added by the developer to output the diagnostic arrays. In
this example, the developer modified the Grell-Freitas (GF) cumulus scheme to output two 2D arrays
and one 3D array. The 2D arrays are aux_2d (:,1) and aux_2d(:,2); the 3D array is aux_3d(:,:,1).
The 2D array aux2d(:,1) will be output with an averaging in time in the UFS, while the aux2d(:,2)
and aux3d arrays will not be averaged.

In this example, the arrays are populated with bogus information just to demonstrate the capability.
In reality, a developer would populate the array with the actual quantity for which output is desirable.

diff --git a/physics/cu_gf_driver.F90 b/physics/cu_gf_driver.F90
index 927b452..aed7348 100644
--- a/physics/cu_gf_driver.F90
+++ b/physics/cu_gf_driver.F90
@@ -76,7 +76,8 @@ contains
 flag_for_scnv_generic_tend,flag_for_dcnv_generic_tend, &
 du3dt_SCNV,dv3dt_SCNV,dt3dt_SCNV,dq3dt_SCNV, &
 du3dt_DCNV,dv3dt_DCNV,dt3dt_DCNV,dq3dt_DCNV, &
- ldiag3d,qdiag3d,qci_conv,errmsg,errflg)
+ ldiag3d,qdiag3d,qci_conv,errmsg,errflg, &
+ naux2d,naux3d,aux2d,aux3d)
 !---
 implicit none
 integer, parameter :: maxiens=1
@@ -137,6 +138,11 @@ contains
 integer, intent(in) :: imfshalcnv
 character(len=*), intent(out) :: errmsg
 integer, intent(out) :: errflg
+
+ integer, intent(in) :: naux2d,naux3d
+ real(kind_phys), intent(inout) :: aux2d(:,:)
+ real(kind_phys), intent(inout) :: aux3d(:,:,:)
+
 ! define locally for now.
 integer, dimension(im),intent(inout) :: cactiv
 integer, dimension(im) :: k22_shallow,kbcon_shallow,ktop_shallow
@@ -199,6 +205,11 @@ contains
 ! initialize ccpp error handling variables
 errmsg = ''
 errflg = 0
+
+ aux2d(:,1) = aux2d(:,1) + 1
+ aux2d(:,2) = aux2d(:,2) + 2
+ aux3d(:,:,1) = aux3d(:,:,1) + 3
+
 !
 ! Scale specific humidity to dry mixing ratio
 !

The cu_gf_driver.meta file was modified accordingly:

diff --git a/physics/cu_gf_driver.meta b/physics/cu_gf_driver.meta
index 99e6ca6..a738721 100644
--- a/physics/cu_gf_driver.meta
+++ b/physics/cu_gf_driver.meta
@@ -476,3 +476,29 @@
 type = integer
 intent = out
 optional = F
+[naux2d]
+ standard_name = number_of_2d_auxiliary_arrays
+ long_name = number of 2d auxiliary arrays to output (for debugging)
+ units = count
+ dimensions = ()
+ type = integer
+[naux3d]
+ standard_name = number_of_3d_auxiliary_arrays
+ long_name = number of 3d auxiliary arrays to output (for debugging)
+ units = count
+ dimensions = ()
+ type = integer
+[aux2d]
+ standard_name = auxiliary_2d_arrays
+ long_name = auxiliary 2d arrays to output (for debugging)
+ units = none
+ dimensions = (horizontal_dimension,number_of_3d_auxiliary_arrays)
+ type = real
+ kind = kind_phys
+[aux3d]
+ standard_name = auxiliary_3d_arrays
+ long_name = auxiliary 3d arrays to output (for debugging)
+ units = none
+ dimensions = (horizontal_dimension,vertical_dimension,number_of_3d_auxiliary_arrays)
+ type = real
+ kind = kind_phys

The following lines were added to the &gfs_physics_nml section of the namelist file input.nml:

naux2d = 2
naux3d = 1
aux2d_time_avg = .true., .false.

Recall that for the SCM, aux2d_time_avg should not be set to true in the namelist.

Lastly, the following lines were added to the diag_table for UFS:

Auxiliary output
"gfs_phys", "aux2d_01", "aux2d_01", "fv3_history2d", "all", .false., "none", 2
"gfs_phys", "aux2d_02", "aux2d_02", "fv3_history2d", "all", .false., "none", 2
"gfs_phys", "aux3d_01", "aux3d_01", "fv3_history", "all", .false., "none",

10.3.2.1. FAQ

10.3.2.1.1. How do I enable the output of diagnostic arrays from multiple parameterizations in a single run?

Suppose you want to output two 2D arrays from schemeA and two 2D arrays from schemeB. You should
set the namelist to naux2d=4 and naux3d=0. In the code for schemeA, you should populate
aux2d(:,1) and aux2d(:,2), while in the code for scheme B you should populate aux2d(:,3)
and aux2d(:,4).

11. Debugging with CCPP

11.1. Introduction

In order to debug code efficiently with CCPP, it is important to remember the conceptual differences between traditional, physics-driver based approaches and the ones with CCPP.

Traditional, physics-driver based approaches rely on hand-written physics drivers that connect the different physical parameterizations together and often contain a large amount of “glue code” required between the parameterizations. As such, the physics drivers usually have access to all variables that are used by the physical parameterizations, while individual parameterizations only have access to the variables that are passed in. Debugging either happens on the level of the physics driver or inside physical parameterizations. In both cases, print statements are inserted in one or more places (e.g. in the driver before/after parameterizations to debug). In the CCPP, there are no hand-written physics drivers. Instead, the physical parameterizations are glued together by a SDF that lists the primary physical parameterizations and so-called interstitial parameterizations (containing the glue code, broken up into logical units) in the order of execution.

11.2. Two categories of debugging with CCPP

	
	Debugging inside physical parameterizations
	Debugging the actual physical parameterizations is identical in CCPP and in physics-driver based models. The parameterizations have access to the same data and debug print statements can be added in exactly the same way.

	
	Debugging on a suite level
	Debugging on a suite level, i.e. outside physical parameterizations, corresponds to debugging on the physics-driver level in traditional, physics-driver based models. In the CCPP, this can be achieved by using dedicated CCPP-compliant debugging schemes, which have access to all the data by requesting them via the metadata files. These schemes can then be called in any place in a SDF, except the fast_physics and time_vary group, to produce the desired debugging output. The advantage of this approach is that debugging schemes can be moved from one place to another or duplicated by simply moving/copying a single line in the SDF before recompiling the code. The disadvantage is that different debugging schemes may be needed, depending on the host model and their data structures.
For example, the UFS models use blocked data structures, which - at present - requires different debugging schemes for the time_vary group in the SDF. The blocked data structures are commonly known as “GFS types”, are defined in GFS_typedefs.F90 and exposed to the CCPP in GFS_typedefs.meta. The rationale for this storage model is a better cache reuse by breaking up contiguous horizontal grid columns into N blocks with a predefined block size, and allocating each of the GFS types N times. For example, the 3-dimensional air temperature is stored as

GFS_data(nb)%Statein%tgrs(1:IM,1:LM) with blocks nb=1,...,N

Further, the UFS models run a subset of physics inside the dynamical core (“fast physics”), for which the host model data is stored inside the dynamical core and cannot be shared with the traditional (“slow”) physics. As such, different debugging schemes are required for the fast_physics group.

11.3. CCPP-compliant debugging schemes for the UFS

For the UFS models, dedicated debugging schemes have been created by the CCPP developers. These schemes can be found in FV3/ccpp/physics/physics/GFS_debug.F90. Developers can use the schemes as-is or customize and add to them as needed. Also, several customization options are documented at the top of the file. These mainly deal with the amount/type of data/information output from arrays, and users can switch between them by turning on or off the corresponding preprocessor directives inside GFS_debug.F90, followed by recompiling.

11.3.1. Descriptions of the CCPP-compliant debugging schemes for the UFS

	
	GFS_diagtoscreen
	This scheme loops over all blocks for all GFS types that are persistent from one time step to the next (except GFS_control) and prints data for almost all constituents. The call signature and rough outline for this scheme is:

subroutine GFS_diagtoscreen_run (Model, Statein, Stateout, Sfcprop, Coupling, &
 Grid, Tbd, Cldprop, Radtend, Diag, Interstitial, &
 nthreads, blkno, errmsg, errflg)
 ! Model / Control - only timestep information for now
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d, 'Model%kdt', Model%kdt)
! Sfcprop
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d, 'Sfcprop%slmsk', Sfcprop%slmsk)
...
! Radtend
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d, 'Radtend%sfcfsw%upfxc', Radtend%sfcfsw(:)%upfxc)
...
!Tbd
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d, 'Tbd%icsdsw', Tbd%icsdsw)
...
! Diag
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d, 'Diag%srunoff', Diag%srunoff)
...
! Statein
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d, 'Statein%phii', Statein%phii)
! Stateout
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d, 'Stateout%gu0', Stateout%gu0)
...
! Coupling
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d, 'Coupling%nirbmdi', Coupling%nirbmdi)
...
! Grid
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d, 'Grid%xlon', Grid%xlon)
...
end subroutine GFS_diagtoscreen_run

All output to stdout/stderr from this routine is prefixed with ‘XXX: ‘ so that it can be easily removed from the log files using “grep -ve ‘XXX: ‘ …” if needed.

	
	GFS_interstitialtoscreen
	This scheme is identical to GFS_diagtoscreen, except that it prints data for all constituents of the GFS_interstitial derived data type only. As for GFS_diagtoscreen, the amount of information printed to screen can be customized using preprocessor statements, and all output to stdout/stderr from this routine is prefixed with ‘XXX: ‘ so that it can be easily removed from the log files using “grep -ve ‘XXX: ‘ …” if needed.

	
	GFS_abort
	This scheme is indispensable to terminate a model run at some point in the call to the physics to avoid time out. It can be customized to meet the developer’s requirements.

subroutine GFS_abort_run (Model, blkno, errmsg, errflg)
 use machine, only: kind_phys
 use GFS_typedefs, only: GFS_control_type
 implicit none

 !--- interface variables
 type(GFS_control_type), intent(in) :: Model
 integer, intent(in) :: blkno
 character(len=*), intent(out) :: errmsg
 integer, intent(out) :: errflg
 ! Initialize CCPP error handling variables
 errmsg = ''
 errflg = 0
 if (Model%kdt==1 .and. blkno==size(Model%blksz)) then
 if (Model%me==Model%master) write(0,*) "GFS_abort_run: ABORTING MODEL"
 call sleep(10)
 stop
 end if
 end subroutine GFS_abort_run

	
	GFS_checkland
	This routine is an example of a user-provided debugging scheme that is useful for solving issues with the fractional grid with the Rapid Update Cycle Land Surface Model (RUC LSM). All output to stdout/stderr from this routine is prefixed with ‘YYY: ‘ (instead of ‘XXX:’), which can be easily removed from the log files using “grep -ve ‘YYY: ‘ …” if needed.

subroutine GFS_checkland_run (me, master, blkno, im, kdt, iter, flag_iter, flag_guess, &
 flag_init, flag_restart, frac_grid, isot, ivegsrc, stype, vtype, slope, &
 soiltyp, vegtype, slopetyp, dry, icy, wet, lake, ocean, &
 oceanfrac, landfrac, lakefrac, slmsk, islmsk, errmsg, errflg)
 ...
 do i=1,im
 !if (vegtype(i)==15) then
 write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, flag_iter(i) :', i, blkno, flag_iter(i)
 write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, flag_guess(i) :', i, blkno, flag_guess(i)
 write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, stype(i) :', i, blkno, stype(i)
 write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, vtype(i) :', i, blkno, vtype(i)
 write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, slope(i) :', i, blkno, slope(i)
 write(0,'(a,2i5,1x,i5)') 'YYY: i, blk, soiltyp(i) :', i, blkno, soiltyp(i)
 write(0,'(a,2i5,1x,i5)') 'YYY: i, blk, vegtype(i) :', i, blkno, vegtype(i)
 write(0,'(a,2i5,1x,i5)') 'YYY: i, blk, slopetyp(i) :', i, blkno, slopetyp(i)
 write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, dry(i) :', i, blkno, dry(i)
 write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, icy(i) :', i, blkno, icy(i)
 write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, wet(i) :', i, blkno, wet(i)
 write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, lake(i) :', i, blkno, lake(i)
 write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, ocean(i) :', i, blkno, ocean(i)
 write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, oceanfrac(i) :', i, blkno, oceanfrac(i)
 write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, landfrac(i) :', i, blkno, landfrac(i)
 write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, lakefrac(i) :', i, blkno, lakefrac(i)
 write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, slmsk(i) :', i, blkno, slmsk(i)
 write(0,'(a,2i5,1x,i5)') 'YYY: i, blk, islmsk(i) :', i, blkno, islmsk(i)
 !end if
 end do

11.3.2. How to use these debugging schemes for the UFS

Below is an example for an SDF that prints debugging output from the standard/persistent GFS types and the interstitial type in two places in the radiation group before aborting. Remember that the model loops through each group N block number of times (with potentially M different threads), hence the need to configure GFS_abort_run correctly (in the above example, it aborts for the last block, which is either the last loop or in the last group of the threaded loop).

<?xml version="1.0" encoding="UTF-8"?>

<suite name="FV3_GFS_v15p2" lib="ccppphys" ver="4">
<!-- <init></init> -->
<group name="fast_physics">
 ...
</group>
<group name="time_vary">
 ...
</group>
<group name="radiation">
 <subcycle loop="1">
 <scheme>GFS_suite_interstitial_rad_reset</scheme>
 <scheme>GFS_diagtoscreen</scheme>
 <scheme>GFS_interstitialtoscreen</scheme>
 <scheme>GFS_rrtmg_pre</scheme>
 <scheme>rrtmg_sw_pre</scheme>
 <scheme>rrtmg_sw</scheme>
 <scheme>rrtmg_sw_post</scheme>
 <scheme>rrtmg_lw_pre</scheme>
 <scheme>rrtmg_lw</scheme>
 <scheme>rrtmg_lw_post</scheme>
 <scheme>GFS_rrtmg_post</scheme>
 <scheme>GFS_diagtoscreen</scheme>
 <scheme>GFS_interstitialtoscreen</scheme>
 <scheme>GFS_abort</scheme>
 </subcycle>
</group>
<group name="physics">
 ...
</group>
<group name="stochastics">
 ...
</group>
<!-- <finalize></finalize> -->
</suite>

Users should be aware that the additional debugging output slows down model runs. It is recommended to reduce the forecast length (as often done for debugging purposes) or increase the walltime limit to debug efficiently.

11.3.3. How to customize the debugging schemes and the output for arrays in the UFS

At the top of GFS_debug.F90, there are customization options in the form of preprocessor directives (CPP #ifdef etc statements) and a brief documentation. Users not familiar with preprocessor directives are referred to the available documentation such as Using fpp Preprocessor Directives [https://software.intel.com/content/www/us/en/develop/documentation/fortran-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/fpp-preprocessing/using-fpp-preprocessor-directives.html]
At this point, three options exist: (1) full output of every element of each array if none of the #define preprocessor statements is used, (2) minimum, maximum, and mean value of arrays (default for GNU compiler), and (3) minimum, maximum, and 32-bit Adler checksum of arrays (default for Intel compiler). Note that Option (3), the Adler checksum calculation, cannot be used with gfortran (segmentation fault, bug in malloc?).

!> \file GFS_debug.F90
!!
!! This is the place to switch between different debug outputs.
!! - The default behavior for Intel (or any compiler other than GNU)
!! is to print minimum, maximum and 32-bit Adler checksum for arrays.
!! - The default behavior for GNU is to minimum, maximum and
!! mean value of arrays, because calculating the checksum leads
!! to segmentation faults with gfortran (bug in malloc?).
!! - If none of the #define preprocessor statements is used,
!! arrays are printed in full (this is often impractical).
!! - All output to stdout/stderr from these routines are prefixed
!! with 'XXX: ' so that they can be easily removed from the log files
!! using "grep -ve 'XXX: ' ..." if needed.
!! - Only one #define statement can be active at any time (per compiler)
!!
!! Available options for debug output:
!!
!! #define PRINT_SUM: print minimum, maximum and mean value of arrays
!!
!! #define PRINT_CHKSUM: minimum, maximum and 32-bit Adler checksum for arrays
!!
#ifdef __GFORTRAN__
#define PRINT_SUM
#else
#define PRINT_CHKSUM
#endif

12. Acronyms

	Abbreviation

	Explanation

	aa

	Aerosol-aware

	API

	Application Programming Interface

	b4b

	Bit-for-bit

	CCPP

	Common Community Physics Package

	CF conventions

	Climate and Forecast Metadata Conventions

	CPP

	C preprocessor

	CPT

	Climate Process Team

	CSAW

	Chikira-Sugiyama convection with Arakawa-Wu
extension

	DDT

	Derived Data Type

	dycore

	Dynamical core

	EDMF

	Eddy-Diffusivity Mass Flux

	EMC

	Environmental Modeling Center

	eps

	Encapsulated PostScript

	ESMF

	The Earth System Modeling Framework

	ESPC

	Earth System Prediction Capability

	FMS

	Flexible Modeling System

	FV3

	Finite-Volume Cubed Sphere

	GF

	Grell-Freitas convective scheme

	GFDL

	Geophysical Fluid Dynamics Laboratory

	GFS

	Global Forecast System

	GSD

	Global Systems Division

	HEDMF

	Hybrid eddy-diffusivity mass-flux

	HTML

	Hypertext Markup Language

	IPD

	Interoperable Physics Driver

	LSM

	Land Surface Model

	MG

	Morrison-Gettelman

	MP

	Microphysics

	MPAS

	Model for Prediction Across Scales

	MPI

	Message Passing Interface

	MYNN

	Mellor-Yamada-Nakanishi-Niino

	NCAR

	National Center for Atmospheric Research

	NEMS

	National Oceanic and Atmospheric Administration
(NOAA) Environmental Modeling System

	NEMSfv3gfs

	National Oceanic and Atmospheric Administration
(NOAA) Environmental Modeling System
using FV3 dynamic core and GFS physics

	NGGPS

	Next Generation Global Prediction System

	NOAA

	National Oceanic and Atmospheric Administration

	NRL

	Naval Research Laboratory

	NSST

	Near Sea Surface Temperature ocean scheme

	NUOPC

	National Unified Operational Prediction
Capability

	OpenMP

	Open Multi-Processing

	PBL

	Planetary Boundary Layer

	png

	Portable Network Graphic

	PR

	Pull request

	PROD

	Compiler optimization flags for production mode

	REPRO

	Compiler optimization flags for reproduction mode
(bit-for-bit testing)

	RRFS

	Rapid Refresh Forecast System

	RRTMG

	Rapid Radiative Transfer Model for Global
Circulation Models

	RT

	Regression test

	RUC

	Rapid Update Cycle

	sa

	Scale-aware

	SAS

	Simplified Arakawa-Schubert

	SCM

	Single Column Model

	SDF

	Suite Definition File

	sfc

	Surface

	SHUM

	Perturbed boundary layer specific humidity

	SKEB

	Stochastic Kinetic Energy Backscatter

	SPPT

	Stochastically Perturbed Physics Tendencies

	TKE

	Turbulent Kinetic Energy

	TWP-ICE

	Tropical Warm Pool International Cloud Experiment

	UML

	Unified Modeling Language

	UFS

	Unified Forecast System

	VLab

	Virtual Laboratory

	WRF

	Weather Research and Forecasting

13. Glossary

	CCPP
	Model agnostic, vetted, collection of codes containing atmospheric physical parameterizations
and suites for use in NWP along with a framework that connects the physics to host models

	CCPP-Framework
	The infrastructure that connects physics schemes with a host model; also refers to a software
repository of the same name

	CCPP-Physics
	The pool of CCPP-compliant physics schemes; also refers to a software repository of the same name

	“Fast” physics
	Physical parameterizations that require tighter coupling with the dynamical core than “slow”
physics (due to the approximated processes within the parameterization acting on a shorter
timescale) and that benefit from a smaller time step. The distinction is useful for greater
accuracy, numerical stability, or both. In the UFS Atmosphere, a saturation adjustment is
used in some suites and is called directly from the dynamical core for tighter coupling

	Group
	A set of physics schemes within a suite definition file (SDF) that are called together
without intervening computations from the host application

	Group cap
	Autogenerated interface between a group of physics schemes and the host model.

	Host model/application
	An atmospheric model that allocates memory, provides metadata for the variables passed into
and out of the physics, and controls time-stepping

	Interstitial scheme
	A modularized piece of code to perform data preparation, diagnostics, or other “glue”
functions that allows primary schemes to work together as a suite. They can be categorized
as “scheme-specific” or “suite-level”. Scheme-specific interstitial schemes augment a
specific primary scheme (to provide additional functionality). Suite-level interstitial
schemes provide additional functionality on top of a class of primary schemes, connect
two or more schemes together, or provide code for conversions, initializing sums, or
applying tendencies, for example.

	Multi-suite CCPP build
	A CCPP build property in which a set of physics suites is specified
at compile time from which one can be chosen at runtime.

	NEMS
	The NOAA Environmental Modeling System - a software infrastructure that supports
NCEP/EMC’s forecast products. The coupling software is based on ESMF and the NUOPC layer.

	NUOPC
	The National Unified Operational Prediction Capability is a consortium of Navy, NOAA,
and Air Force modelers and their research partners. It aims to advance the weather
modeling systems used by meteorologists, mission planners, and decision makers. NUOPC
partners are working toward a common model architecture - a standard way of building
models - in order to make it easier to collaboratively build modeling systems.

	Parameterization
	The representation, in a dynamic model, of physical effects in terms of admittedly
oversimplified parameters, rather than realistically requiring such effects to be
consequences of the dynamics of the system (AMS Glossary)

	Physics cap
	Generic name to refer to suite and group physics caps.

	Physics Suite cap
	Autogenerated interface between an entire suite of physics schemes and the host model.
It consists of calls to autogenerated physics group caps. It may be used to call an entire suite
at once or to call a specific group within a physics suite

	Primary scheme
	A parameterization, such as PBL, microphysics, convection, and radiation, that fits the
traditionally-accepted definition, as opposed to an interstitial scheme

	PROD
	Compiler flags used by NCEP for operational runs of the UFS Atmosphere and by EMC for
regression tests of the code

	REPRO
	Compiler flags used by EMC to guarantee reproducibility of the UFS Atmosphere code

	Scheme
	A CCPP-compliant parameterization (primary scheme) or auxiliary code (interstitial scheme)

	SDF
	Suite Definition File (SDF) is an external file containing information about the
construction of a physics suite. It describes the schemes that are called, in which
order they are called, whether they are subcycled, and whether they are assembled
into groups to be called together

	Set
	A collection of physics schemes that do not share memory (e.g. fast and slow physics)

	“Slow” physics
	Physical parameterizations that can tolerate looser coupling with the dynamical core
than “fast” physics (due to the approximated processes within the parameterization
acting on a longer timescale) and that often use a longer time step. Such parameterizations
are typically grouped and calculated together (through a combination of process- and
time-splitting) in a section of an atmospheric model that is distinct from the dynamical
core in the code organization

	Standard_name
	Variable names based on CF conventions (http://cfconventions.org) that are uniquely
identified by the CCPP-compliant schemes and provided by a host model

	Subcycling
	Executing a physics scheme more frequently (with a shorter timestep) than the rest of
the model physics or dynamics

	Suite
	A collection of primary physics schemes and interstitial schemes that are known to work
well together

	UFS
	A Unified Forecast System (UFS) is a community-based, coupled comprehensive Earth
system modeling system. The UFS numerical applications span local to global domains
and predictive time scales from sub-hourly analyses to seasonal predictions. It is
designed to support the Weather Enterprise and to be the source system for NOAA’s
operational numerical weather prediction applications

	UFS Atmosphere
	The atmospheric model component of the UFS. Its fundamental parts are the dynamical
core and the physics

	UFS Weather Model
	Global meduim-range, weather-prediction model previously known as NEMSfv3gfs or FV3GFS
used to create forecasts.

	VLab
	Virtual Laboratory - a service and information technology framework, that enables
NOAA employees and their partners to share ideas, collaborate, engage in software
development, and conduct applied research (https://www.nws.noaa.gov/mdl/vlab/)

	.xsd file extension
	XML schema definition

Index

 Symbols
 | C
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | U
 | V

Symbols

 	
 	"Fast" physics

 	
 	"Slow" physics

 	.xsd file extension

C

 	
 	CCPP

 	
 	CCPP-Framework

 	CCPP-Physics

G

 	
 	Group

 	
 	Group cap

H

 	
 	Host model/application

I

 	
 	Interstitial scheme

M

 	
 	Multi-suite CCPP build

N

 	
 	NEMS

 	
 	NUOPC

P

 	
 	Parameterization

 	Physics cap

 	
 	Physics Suite cap

 	Primary scheme

 	PROD

R

 	
 	REPRO

S

 	
 	Scheme

 	SDF

 	Set

 	
 	Standard_name

 	Subcycling

 	Suite

U

 	
 	UFS

 	
 	UFS Atmosphere

 	UFS Weather Model

V

 	
 	VLab

Building and Running Host Models

The following instructions describe how to compile and run the CCPP code with the SCM (Section %s). Instructions are for the Hera, Jet and Cheyenne computational platforms, with examples on how to run the code on Hera.

SCM

One option for a CCPP host model is the SCM. This can be a valuable tool for diagnosing the performance of a physics suite, from validating that schemes have been integrated into a suite correctly to deep dives into how physical processes are being represented by the approximating code. In fact, this SCM likely serves as the simplest example for using the CCPP and its framework in an atmospheric model.

System Requirements, Libraries, and Tools

The source code for the SCM and CCPP component is in the form of programs written in FORTRAN, FORTRAN 90, and C. In addition, the I/O relies on the netCDF libraries. Beyond the standard scripts, the build system relies on the use of the Python scripting language, along with cmake, GNU make and date.

The basic requirements for building and running the CCPP and SCM bundle are listed below. The versions listed reflect successful tests and there is no guarantee that the code will work with different versions.

	
	FORTRAN 90+ compiler versions
	
	ifort 18.0.1.163 and 19.0.2

	gfortran 6.2, 8.1, and 9.1

	pgf90 17.7 and 17.9

	
	C compiler versions
	
	icc v18.0.1.163 and 19.0.2

	gcc 6.2 and 8.1

	AppleClang 10.0.0.10001145

	pgcc 17.7 and 17.9

	cmake versions 2.8.12.1, 2.8.12.2, and 3.6.2

	netCDF with HDF5, ZLIB and SZIP versions 4.3.0, 4.4.0, 4.4.1.1, 4.5.0, 4.6.1, and 4.6.3 (not 3.x)

	Python versions 2.7.5, 2.7.9, 2.7.13, and 3.x

	Libxml2 versions 2.2 and 2.9.7 (not 2.9.9)

Because these tools and libraries are typically the purview of system administrators to install and maintain, they are considered part of the basic system requirements.
Further, there are several utility libraries as part of the NCEPlibs package that must be installed prior to building the SCM.

	bacio v2.0.1 - Binary I/O library

	sp v2.0.2 - Spectral Transformation Library

	w3nco v2.0.6 - GRIB decoder and encoder library

These libraries are prebuilt on most NOAA machines using the Intel compiler. For those needing to build the libraries themselves, DTC recommends using the source code from GitHub at https://github.com/NCAR/NCEPlibs.git, which includes build files for various compilers and machines using OpenMP flags and which are thread-safe. Instructions for installing NCEPlibs are included on the GitHub repository webpage, but for the sake of example, execute the following for obtaining and building from source in /usr/local/NCEPlibs on a Mac:

mkdir /usr/local/NCEPlibs
cd /usr/local/src
git clone https://github.com/NCAR/NCEPlibs.git
cd NCEPlibs
./make_ncep_libs.sh -s macosx -c gnu -d /usr/local/NCEPlibs -o 1

Once NCEPlibs is built, the NCEPLIBS_DIR environment variable must be set to the location of the installation. For example, if NCEPlibs was installed in /usr/local/NCEPlibs, one would execute

export NCEPLIB_DIR=/usr/local/NCEPlibs

If using Hera or Cheyenne HPC systems, this environment variable is automatically set to an appropriate installation of NCEPlibs on those machines through use of one of the setup scripts described below.

Building and Running the SCM

Instructions for downloading the code are provided in Chapter 7. Here are the steps to compile and run SCM:

	Run the CCPP prebuild script to match required physics variables with those available from the dycore (SCM) and to generate physics caps and makefile segments.

./ccpp/framework/scripts/ccpp_prebuild.py --config=./ccpp/config/ccpp_prebuild_config.py [-- debug]

	Change directory to the top-level SCM directory.

cd scm

	(Optional) Run the machine setup script if necessary. This script loads compiler modules (Fortran 2003-compliant), netCDF module, etc. and sets compiler environment variables.

	source etc/Hera_setup_intel.csh (for csh) or . etc/Hera_setup_intel.sh (for bash)

	source etc/Hera_setup_gnu.csh (for csh) or . etc/Hera_setup_gnu.sh (for bash)

	source etc/Hera_setup_pgi.csh (for csh) or . etc/Hera_setup_pgi.sh (for bash)

	source etc/Cheyenne_setup_intel.csh (for csh) or . etc/Cheyenne_setup_intel.sh (for bash)

	source etc/Cheyenne_setup_gnu.csh (for csh) or . etc/Cheyenne_setup_gnu.sh (for bash)

	source etc/Cheyenne_setup_pgi.csh (for csh) or . etc/Cheyenne_setup_pgi.sh (for bash)

	source etc/UBUNTU_setup.csh (for csh) or . etc/UBUNTU_setup.sh (for bash) if following the instructions in doc/README_UBUNTU.txt

	source etc/CENTOS_setup.csh (for csh) or . etc/CENTOS_setup.sh (for bash) if following the instructions in doc/README_CENTOS.txt

	source etc/MACOSX_setup.csh (for csh) or . etc/MACOSX_setup.sh (for bash) if following the instructions in doc/README_MACOSX.txt

Note

If using a local Linux or Mac system, we provide instructions for how to set up your development system (compilers and libraries) in doc/README_{MACOSX,UBUNTU,CENTOS}.txt. If following these, you will need to run the respective setup script listed above. If your computing environment was previously set up to use modern compilers with an associated netCDF installation, it may not be necessary, although we recommend setting environment variables such as CC and FC. For version 3.0 and above, it is required to have the NETCDF environment variable set to the path of the netCDF installation that was compiled with the same compiler used in the following steps. Otherwise, the cmake step will not complete successfully.

	Make a build directory and change into it.

mkdir bin && cd bin

	Invoke cmake on the source code to build using one of the commands below.

	Without threading / OpenMP

cmake ../src

	With threading / OpenMP

cmake -DOPENMP=ON ../ src

	Debug mode

cmake -DCMAKE_BUILD_TYPE=Debug ../ src

	If cmake cannot find libxml2 because it is installed in a non-standard location, add the following to the cmake command.

-DPC_LIBXML_INCLUDEDIR=...
-DPC_LIBXML_LIBDIR=...

	Compile with make command. Add VERBOSE=1 to obtain more information on the build process.

make

Note that this will produce executable gmtb_scm and library libccppphys.so.X.Y.Z (where X is a major version number; Y is a minor version number, and Z is a patchlevel) and libccppphys.so, which is a link to libccppphys.so.X.Y.Z. The library, which is located in ccpp/lib, will be dynamically linked to the executable at runtime.

If compilation successfully completes, a working executable named gmtb_scm will have been created in the bin directory.

Although make clean is not currently implemented, an out-of-source build is used, so all that is required to clean the build/run directory is (from the bin directory)

pwd #confirm that you are in the build/run directory before deleting files
rm -rfd *

Warning

This command can be dangerous (deletes files without confirming), so make sure that you’re in the right directory before executing!

There are several test cases provided with this version of the SCM. For all cases, the SCM will go through the time steps, applying forcing and calling the physics defined in the chosen SDF using physics configuration options from an associated namelist. The model is executed through one of two Python run scripts that are pre-staged into the bin directory: run_gmtb_scm.py or multi_run_gmtb_scm.py. The former sets up and runs one integration while the latter sets up and runs several integrations serially.

Single Run Script Usage

Running a case requires three pieces of information: the case to run (consisting of initial conditions, geolocation, forcing data, etc.), the physics suite to use (through a CCPP SDF), and a physics namelist (that specifies configurable physics options to use). Cases are set up via their own namelists in ../etc/case_config. A default physics suite is provided as a user-editable variable in the script and default namelists are associated with each physics suite (through ../src/default_namelists.py), so, technically, one must only specify a case to run with the SCM. The single run script’s interface is described below.

./run_gmtb_scm.py -c CASE_NAME [-s SUITE_NAME] [-n PHYSICS_NAMELIST_PATH] [-g]

When invoking the run script, the only required argument is the name of the case to run. The case name used must match one of the case configuration files located in ../etc/case_config (without the .nml extension!). If specifying a suite other than the default, the suite name used must match the value of the suite name in one of the SDFs located in ../../ccpp/suites (Note: not the filename of the SDF). As part of this CCPP release, the following suite names are valid:

	SCM_GFS_v15p2

	SCM_GFS_v16beta

	SCM_csawmg

	SCM_GSD_v1

	RRFS_v1alpha

	Note that using the Thompson microphysics scheme (as in SCM_GSD_v1) requires the existence of lookup tables during its initialization phase. As of the release, computation of the lookup tables has been prohibitively slow with this model, so it is highly suggested that they be downloaded and staged to use this scheme (and the SCM_GSD_v1 suite). Pre-computed tables have been created and are available for download at the following URLs:
	
	https://dtcenter.org/GMTB/freezeH2O.dat (243 M)

	https://dtcenter.org/GMTB/qr_acr_qg.dat (49 M)

	https://dtcenter.org/GMTB/qr_acr_qs.dat (32 M)

These files should be staged in gmtb-scm/scm/data/physics_input_data prior to executing the run script. Since binary files can be system-dependent (due to endianness), it is possible that these files will not be read correctly on your system. For reference, the linked files were generated on Hera using the Intel v18 compiler.

Also note that some cases require specified surface fluxes. Special SDFs that correspond to the suites listed above have been created and use the *_prescribed_surface decoration. It is not necessary to specify this filename decoration when specifying the suite name. If the spec_sfc_flux variable in the configuration file of the case being run is set to .true., the run script will automatically use the special SDF that corresponds to the chosen suite from the list above.

If specifying a namelist other than the default, the value must be an entire filename that exists in ../../ccpp/physics_namelists. Caution should be exercised when modifying physics namelists since some redundancy between flags to control some physics parameterizations and scheme entries in the SDFs currently exists. Values of numerical parameters are typically OK to change without fear of inconsistencies. Lastly, the -g flag can be used to run the executable through the gdb debugger (assuming it is installed on the system).

If the run aborts with the error message

gmtb_scm: libccppphys.so.X.X.X: cannot open shared object file: No such file or directory

the environment variable LD_LIBRARY_PATH must be set to

export LD_LIBRARY_PATH=$PWD/ccpp/physics:$LD_LIBRARY_PATH

before running the model.

A netCDF output file is generated in the location specified in the case configuration file, if the output_dir variable exists in that file. Otherwise an output directory is constructed from the case, suite, and namelist used (if different from the default). All output directories are placed in the bin directory. Any standard netCDF file viewing or analysis tools may be used to examine the output file (ncdump, ncview, NCL, etc).

Multiple Run Script Usage

A second Python script is provided for automating the execution of multiple integrations through repeated calling of the single run script. From the run directory, one may use this script through the following interface.

./multi_run_gmtb_scm.py {[-c CASE_NAME] [-s SUITE_NAME] [-f PATH_TO_FILE]} [-v{v}] [-t]

No arguments are required for this script. The -c or --case, -s or –-suite, or -f or –-file options form a mutually-exclusive group, so exactly one of these is allowed at one time. If –c is specified with a case name, the script will run a set of integrations for all supported suites (defined in ../src/supported_suites.py) for that case. If -s is specified with a suite name, the script will run a set of integrations for all supported cases (defined in ../src/supported_cases.py) for that suite. If -f is specified with the path to a filename, it will read in lists of cases, suites, and namelists to use from that file. If multiple namelists are specified in the file, there either must be one suite specified or the number of suites must match the number of namelists. If none of the -c or --case, -s or –-suite, or -f or –-file options group is specified, the script will run through all permutations of supported cases and suites (as defined in the files previously mentioned).

In addition to the main options, some helper options can also be used with any of those above. The -vv or –-verbose option can be used to output more information from the script to the console and to a log file. If this option is not used, only completion progress messages are written out. If -v is used, the script will write out completion progress messages and all messages and output from the single run script. If -vv is used, the script will also write out all messages and single run script output to a log file (multi_run_gmtb_scm.log) in the bin directory. The final option, -t or –-timer, can be used to output the elapsed time for each integration executed by the script. Note that the execution time includes file operations performed by the single run script in addition to the execution of the underlying (Fortran) SCM executable. By default, this option will execute one integration of each subprocess. Since some variability is expected for each model run, if greater precision is required, the number of integrations for timing averaging can be set through an internal script variable. This option can be useful, for example, for getting a rough idea of relative computational expense of different physics suites.

Batch Run Script

If using the model on HPC resources and significant amounts of processor time is anticipated for the experiments, it will likely be necessary to submit a job through the HPC’s batch system. An example script has been included in the repository for running the model on Hera’s batch system (SLURM). It is located in gmtb-scm/scm/etc/gmtb_scm_slurm_example.py. Edit the job_name, account, etc. to suit your needs and copy to the bin directory. The case name to be run is included in the command variable. To use, invoke

./gmtb_scm_slurm_example.py

from the bin directory.

How to Use this Document

This document contains documentation for the Common Community Physics Package (CCPP). It describes the

	Physics schemes and interstitials

	Suite definition files

	CCPP-compliant parameterizations

	Process to add a new scheme or suite

	Host-side coding

	CCPP code management and governance

	Parameterization-specific output

	Debugging strategies

This table describes the type changes and symbols used in this guide.

	Typeface or Symbol

	Meaning

	Example

	AaBbCc123

	The names of commands,
files, and directories;

on-screen computer output

	Edit your .bashrc

Use ls -a to list all files.

host$ You have mail!

Following these typefaces and conventions, shell commands, code examples, namelist variables, etc.
will be presented in this style:

mkdir ${TOP_DIR}

 _static/ccpp_static_build.png
generates

Suite Definition File

Metadata: Variables
Requested

During Build Step

_static/minus.png

_static/plus.png

_static/file.png

_images/CCPP_Ecosystem_Detailed-Diagram_only.png
Common Community Physics Package (CCPP) Ecosystem

Open Community, play
in local sandboxes
(never commit) Universities

Labs

Open Community,
o2, commit when

N\

Universities
& ;
o ;@:c,ﬁ collaborating

Labs
EMC

Core partners (review
committee) determine
elevation to supported
suite

EMC
DTC

_images/DoxygenCallGraph.png
Horo i ho cal graph for s functon:

_images/DoxygenFileList.png
File List

Here is a list of all files with brief descriptions:

2 calpreciptype.90
funcphys.f90
gtdl_cloud_microphys.F90

2 gtd_tv_sat_ad].F30

) GFS_MP_generic.F90
) gscond.f

2 gwdet

2 gwdps.t

h2ophys.f
2 mfpblf

2 module_bfmicrophysics.t

“This file contains the subroutines that calculates dominant precipitation type
This file includes AP for basic thermodynamic physics

“This file contains the CCPP entry point for the column GFDL cloud
‘microphysics (Chen and Lin (2013) [13])

“This fle contains the fast saturation adjustment in the GFDL cloud
‘microphysics. and it is an intermediate physics" implemented in the remapping
Lagrangian to Eulerian loop of FV3 solver

“This file contains the subroutines that calculate diagnotics variables
before/after caling any microphysics scheme:

“This file contains the subroutine that calculates grid-scale condensation and
evaporation for use in Zhao and Carr (1997) [106] scheme

“This fle is the original code for parameterization of stationary convection forced
gravity wave drag based on Chun and Baik (1996) [18]

“This file is the parameterization of orographic gravity wave drag and mountain
blocking

This file include NRL H20 physics for stratosphere and mesosphere

“This file contains the subroutine that calculates the updraft properties and
‘mass flux for use in the Hybrid EDMF PBL scheme
“This file contains some subroutines used in microphysics

_images/ccpp_arch_host.png
Physics caps

Physics caps

e | o] e [o | |

CCPP Physics

nav.xhtml

 Table of Contents

 		
 CCPP Technical Documentation

 		
 CCPP Overview

 		
 Additional Resources

 		
 How to Use this Document

 		
 CCPP-Compliant Physics Parameterizations

 		
 General Rules

 		
 Metadata Rules

 		
 Input/output Variable (argument) Rules

 		
 Coding Rules

 		
 Parallel Programming Rules

 		
 Scientific Documentation Rules

 		
 Doxygen Comments and Commands

 		
 Doxygen Documentation Style

 		
 Doxygen Configuration

 		
 Including metadata information

 		
 Using Doxygen

 		
 CCPP Configuration and Build Options

 		
 Constructing Suites

 		
 Suite Definition File

 		
 Groups

 		
 Subcycling

 		
 Order of Schemes

 		
 Interstitial Schemes

 		
 SDF Examples

 		
 Simplest Case: Single Group and no Subcycling

 		
 Case with Multiple Groups

 		
 Case with Subcycling

 		
 GFS v16beta Suite

 		
 Suite and Group Caps

 		
 Overview

 		
 Automatic unit conversions

 		
 Host Side Coding

 		
 Variable Requirements on the Host Model Side

 		
 Metadata for Variable in the Host Model

 		
 Active Attribute

 		
 CCPP Variables in the SCM and UFS Atmosphere Host Models

 		
 CCPP API

 		
 Data Structure to Transfer Variables between Dynamics and Physics

 		
 Initializing and Finalizing the CCPP

 		
 Running the physics

 		
 Initializing and Finalizing the Physics

 		
 Host Caps

 		
 SCM Host Cap

 		
 UFS Atmosphere Host Cap

 		
 CCPP Code Management

 		
 Organization of the Code

 		
 Authoritative Repositories

 		
 Directory Structure of ccpp/framework

 		
 Directory Structure of ccpp/physics

 		
 GitHub Workflow (setting up development repositories)

 		
 Creating Forks

 		
 Checking out the Code

 		
 Committing Changes to your Fork

 		
 Contributing Code, Code Review Process

 		
 Creating a PR

 		
 Technical Aspects of the CCPP Prebuild

 		
 Prebuild Script Function

 		
 Script Configuration

 		
 Running ccpp_prebuild.py

 		
 Troubleshooting

 		
 Tips for Adding a New Scheme

 		
 Parameterization-specific Output

 		
 Overview

 		
 Tendencies

 		
 Available Tendencies

 		
 Activating Tendencies

 		
 Outputting Tendencies

 		
 FAQ

 		
 Why did I run out of memory when outputting tendencies?

 		
 Why did I get a runtime logic error when outputting tendencies?

 		
 Output of Auxiliary Arrays from CCPP

 		
 Enabling the capability

 		
 Recompiling and Examples

 		
 Debugging with CCPP

 		
 Introduction

 		
 Two categories of debugging with CCPP

 		
 CCPP-compliant debugging schemes for the UFS

 		
 Descriptions of the CCPP-compliant debugging schemes for the UFS

 		
 How to use these debugging schemes for the UFS

 		
 How to customize the debugging schemes and the output for arrays in the UFS

 		
 Acronyms

 		
 Glossary

_static/CCPP_Ecosystem_Detailed-Diagram_only.png
Common Community Physics Package (CCPP) Ecosystem

Open Community, play
in local sandboxes
(never commit) Universities

Labs

Open Community,
o2, commit when

N\

Universities
& ;
o ;@:c,ﬁ collaborating

Labs
EMC

Core partners (review
committee) determine
elevation to supported
suite

EMC
DTC

_static/DoxygenCallGraph.png
Horo i ho cal graph for s functon:

_images/ccpp_prebuild_static_only.png
Inputs

ccpp_prebuild.py
functions

SDF(s)

parse SDFs

ccpp_prebuild_config.py

SUITES_DIR

VARIABLE_DEFINITION_FILES

TYPEDEFS_NEW_METADATA

|| check: each physics scheme is a member of

only one physics set
collect host model's variables and metadata

collect physics schemes' variables and
metadata

HTML_VARTABLE_FILE
SCHEME_FILES

OPTIONAL_ARGUMENTS

LATEX_VARTABLE_FILE

TYPEDEFS_[CIMAKEFILE/SOURCEFILE

_,| filter the physics schemes' variables by the

input SDFs

add optional arguments to physics schemes'
variables

write LATEX table of provided/requested
variables

create a set of matched variables given the
list provided by the host model and the list
requested by the physics schemes

Outputs

HTML table of host-
provided variables

LATEX table of host-
provided variables and
physics-requested

variables

Icreate makefile/cmake code for type definition|

makefile code for type

files definitions
| SCHEME FILE DEPENDENCIES | VU|_,{ create makefilelcmake code for physics makefile code for
SCHEMES_[CJMAKEFILE/SOURCEFILE schemes schemes
CAPS_DIR create software caps for the physics suite and [suite and group caps
STATIC_APL DIR physics groups defined in the SDFs %J
S [generate the static api > static CCPP API
STATIC_API_SRCFILE

CAPS_[CIMAKEFILE/SOURCEFILE

I —

icreate makefile/cmake code for software caps|

makefile code for caps

_images/ccpp_static_build.png
generates

Suite Definition File

Metadata: Variables
Requested

During Build Step

_static/ccpp_arch_host.png
Physics caps

Physics caps

e | o] e [o | |

CCPP Physics

_static/ccpp_ecosystem.png

_static/DoxygenFileList.png
File List

Here is a list of all files with brief descriptions:

2 calpreciptype.90
funcphys.f90
gtdl_cloud_microphys.F90

2 gtd_tv_sat_ad].F30

) GFS_MP_generic.F90
) gscond.f

2 gwdet

2 gwdps.t

h2ophys.f
2 mfpblf

2 module_bfmicrophysics.t

“This file contains the subroutines that calculates dominant precipitation type
This file includes AP for basic thermodynamic physics

“This file contains the CCPP entry point for the column GFDL cloud
‘microphysics (Chen and Lin (2013) [13])

“This fle contains the fast saturation adjustment in the GFDL cloud
‘microphysics. and it is an intermediate physics" implemented in the remapping
Lagrangian to Eulerian loop of FV3 solver

“This file contains the subroutines that calculate diagnotics variables
before/after caling any microphysics scheme:

“This file contains the subroutine that calculates grid-scale condensation and
evaporation for use in Zhao and Carr (1997) [106] scheme

“This fle is the original code for parameterization of stationary convection forced
gravity wave drag based on Chun and Baik (1996) [18]

“This file is the parameterization of orographic gravity wave drag and mountain
blocking

This file include NRL H20 physics for stratosphere and mesosphere

“This file contains the subroutine that calculates the updraft properties and
‘mass flux for use in the Hybrid EDMF PBL scheme
“This file contains some subroutines used in microphysics

_static/ccpp_prebuild_static_only.png
Inputs

ccpp_prebuild.py
functions

SDF(s)

parse SDFs

ccpp_prebuild_config.py

SUITES_DIR

VARIABLE_DEFINITION_FILES

TYPEDEFS_NEW_METADATA

|| check: each physics scheme is a member of

only one physics set
collect host model's variables and metadata

collect physics schemes' variables and
metadata

HTML_VARTABLE_FILE
SCHEME_FILES

OPTIONAL_ARGUMENTS

LATEX_VARTABLE_FILE

TYPEDEFS_[CIMAKEFILE/SOURCEFILE

_,| filter the physics schemes' variables by the

input SDFs

add optional arguments to physics schemes'
variables

write LATEX table of provided/requested
variables

create a set of matched variables given the
list provided by the host model and the list
requested by the physics schemes

Outputs

HTML table of host-
provided variables

LATEX table of host-
provided variables and
physics-requested

variables

Icreate makefile/cmake code for type definition|

makefile code for type

files definitions
| SCHEME FILE DEPENDENCIES | VU|_,{ create makefilelcmake code for physics makefile code for
SCHEMES_[CJMAKEFILE/SOURCEFILE schemes schemes
CAPS_DIR create software caps for the physics suite and [suite and group caps
STATIC_APL DIR physics groups defined in the SDFs %J
S [generate the static api > static CCPP API
STATIC_API_SRCFILE

CAPS_[CIMAKEFILE/SOURCEFILE

I —

icreate makefile/cmake code for software caps|

makefile code for caps

